Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132

Xia Lu, Alexander Johs, Linduo Zhao, Lihong Wang, Eric M. Pierce, Baohua Gu

Research output: Contribution to journalArticlepeer-review


Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) and doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. These observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.

Original languageEnglish (US)
Pages (from-to)372-376
Number of pages5
JournalEnvironmental Science and Technology Letters
Issue number6
StatePublished - Jun 12 2018
Externally publishedYes

ASJC Scopus subject areas

  • Environmental Chemistry
  • Ecology
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132'. Together they form a unique fingerprint.

Cite this