Nanometer scale mechanical behavior of grain boundaries

Chien Kai Wang, Huck Beng Chew, Kyung Suk Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A nonlinear field projection method has been developed to study nanometer scale mechanical properties of grain boundaries in nanocrystalline FCC metals. The nonlinear field projection is based on the principle of virtual work, for virtual variations of atomic positions in equilibrium through nonlocal interatomic interactions such as EAM potential interaction, to get field-projected subatomic-resolution traction distributions on various grain boundaries. The analyses show that the field projected traction produces periodic concentrated compression sites on the grain boundary, which act as crack trapping or dislocation nucleation sites. The field projection was also used to assess the nanometer scale failure processes of Cu Σ5 grain boundaries doped with Pb. It was revealed that the Pb dopants prevented the emission of dislocations by grain boundary slip and embrittles the grain boundary.

Original languageEnglish (US)
Title of host publicationDeformation Mechanisms, Microstructure Evolution and Mechanical Properties of Nanoscale Materials
Pages1-9
Number of pages9
DOIs
StatePublished - 2011
Externally publishedYes
Event2010 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 29 2010Dec 3 2010

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1297
ISSN (Print)0272-9172

Other

Other2010 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period11/29/1012/3/10

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Nanometer scale mechanical behavior of grain boundaries'. Together they form a unique fingerprint.

Cite this