TY - JOUR
T1 - Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis
AU - Olson, Dean
AU - Lacey, M. E.
AU - Webb, A. G.
AU - Sweedler, Jonathan V
PY - 1999/8/1
Y1 - 1999/8/1
N2 - Recent advances in the analysis of nanoliter volumes using 1H NMR microcoils have led to the application of microcoils as detectors for capillary electrophoresis (CE). Custom NMR probes consisting of 1-mm-long solenoidal microcoils are fabricated from 50-μm diameter wire wrapped around capillaries to create nanoliter-volume detection cells. For geometries in which the capillary and static magnetic field are not parallel, the electrophoretic current induces a magnetic field gradient which degrades the spectroscopic information obtainable from CE/NMR. To reduce this effect and allow longer analyte observation times, the electrophoretic voltage is periodically interrupted so that 1-min high-resolution NMR spectra are obtained for every 15 s of applied voltage. The limits of detection (LODs; based on S/N = 3) for CE/NMR for arginine are 57 ng (330 pmol; 31 mM) and for triethylamine (TEA) are 9 ng (88 pmol; 11 mM). Field-amplified stacking is used for sample preconcentration. As one example, a 290-nL injection of a mixture of arginine and TEA both at 50 mM (15 nmol of each injected) is stacked severalfold for improved concentration LODs while achieving a separation efficiency greater than 50 000. Dissolving a sample in a mixture of 10% H2O/90% D2O allows H2O to serve as the nearly ideal neutral tracer and allows direct observation of the parabolic and fiat flow profiles associated with gravimetric and electrokinetic injection, respectively. The unique capabilities of CE and the rich spectral information provided by NMR spectroscopy combine to yield a valuable analytical tool, especially in the study of mass-limited samples.
AB - Recent advances in the analysis of nanoliter volumes using 1H NMR microcoils have led to the application of microcoils as detectors for capillary electrophoresis (CE). Custom NMR probes consisting of 1-mm-long solenoidal microcoils are fabricated from 50-μm diameter wire wrapped around capillaries to create nanoliter-volume detection cells. For geometries in which the capillary and static magnetic field are not parallel, the electrophoretic current induces a magnetic field gradient which degrades the spectroscopic information obtainable from CE/NMR. To reduce this effect and allow longer analyte observation times, the electrophoretic voltage is periodically interrupted so that 1-min high-resolution NMR spectra are obtained for every 15 s of applied voltage. The limits of detection (LODs; based on S/N = 3) for CE/NMR for arginine are 57 ng (330 pmol; 31 mM) and for triethylamine (TEA) are 9 ng (88 pmol; 11 mM). Field-amplified stacking is used for sample preconcentration. As one example, a 290-nL injection of a mixture of arginine and TEA both at 50 mM (15 nmol of each injected) is stacked severalfold for improved concentration LODs while achieving a separation efficiency greater than 50 000. Dissolving a sample in a mixture of 10% H2O/90% D2O allows H2O to serve as the nearly ideal neutral tracer and allows direct observation of the parabolic and fiat flow profiles associated with gravimetric and electrokinetic injection, respectively. The unique capabilities of CE and the rich spectral information provided by NMR spectroscopy combine to yield a valuable analytical tool, especially in the study of mass-limited samples.
UR - http://www.scopus.com/inward/record.url?scp=0032587142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032587142&partnerID=8YFLogxK
U2 - 10.1021/ac990117+
DO - 10.1021/ac990117+
M3 - Article
C2 - 10450155
AN - SCOPUS:0032587142
SN - 0003-2700
VL - 71
SP - 3070
EP - 3076
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 15
ER -