TY - JOUR
T1 - Mutagenic analysis of 2,3-diaminophenazine and 2-amino-3-hydroxyphenazine in Salmonella strains expressing different levels of O-acetyltransferase with and without plant and mammalian activation
AU - Wagner, Elizabeth D.
AU - Cebulska-Wasilewska, Antonina
AU - Connolly, Sarah
AU - Plewa, Michael J.
N1 - Funding Information:
This researchw as funded in part by U.S. Environmental Protection Agency ResearchG rant R-823 184. We thank James Lodolce and Anupam Basu for technical assistancew ith some of the experiments. We acknowledge support from the University of Illinois Campus Honors Program for student research.
PY - 1996/11/11
Y1 - 1996/11/11
N2 - 2,3-Diaminephenazine (DAP) and 2-amino-3-hydroxyphenazine (AHP) are products generated from oxidative-type phenylenediamine hair dyes and are also present in pesticide formulations as contaminants. Earlier studies demonstrated that DAP and AHP were mutagenic in Salmonella typhimurium strains after mammalian microsomal activation. Plant systems can activate structurally similar arylamines. S. typhimurium strains have been developed that express elevated levels of acetyl-CoA:N-hydroxyarylamine O-acetyltransferase (OAT). O-acetyltransferase expression is necessary for the generation of the ultimate arylamine promutagen after plant activation. A number of arylamines including 2-aminofluorene, benzidine and 4-aminobiphenyl were activated by plant cells into mutagens in the OAT over-expressing S. typhimurium strain, YG1024. The objectives of this research were to examine the mutagenicity of DAP and AHP with mammalian or plant activation in Salmonella strains with different acetyltransferase activities. The hypothesis tested was whether and to what degree a metabolite of DAP or AHP could serve as a subsuata for bacterial O-acetyltransferase and induct mutation in Salmonella. DAP and AHP without activation induced both frameshift and base pair substitution mutations in S. typhimurium strains that exhibited elevated levels of O-acetyltransferase activity. The mutagenicity of DAP and AHP were greatly enhanced with mammalian hepatic microsomal activation resulting in a preferential induction of frameshift mutations. With the hisD3052 allele as the gene target, S9-activated DAP induced frameshift mutations in YG1024 and TA98 as well as the OAT deficient strain TA98/1,8-DNP6. S9-activated AHP induced mutation only in the OAT over-expressing strain, YG1024. With the hisG46 allele, O-acetyltransferase activity was necessary for the metabolism of DAP and AHP to products that induce base pair substitution mutations. An intriguing finding of this work was the antimutagenic capacity of TX1MX, a plant cell-free activation mixture. TX1MX repressed the mutagenic activity of both DAP and AHP at frameshift and base pair substitution mutation targets.
AB - 2,3-Diaminephenazine (DAP) and 2-amino-3-hydroxyphenazine (AHP) are products generated from oxidative-type phenylenediamine hair dyes and are also present in pesticide formulations as contaminants. Earlier studies demonstrated that DAP and AHP were mutagenic in Salmonella typhimurium strains after mammalian microsomal activation. Plant systems can activate structurally similar arylamines. S. typhimurium strains have been developed that express elevated levels of acetyl-CoA:N-hydroxyarylamine O-acetyltransferase (OAT). O-acetyltransferase expression is necessary for the generation of the ultimate arylamine promutagen after plant activation. A number of arylamines including 2-aminofluorene, benzidine and 4-aminobiphenyl were activated by plant cells into mutagens in the OAT over-expressing S. typhimurium strain, YG1024. The objectives of this research were to examine the mutagenicity of DAP and AHP with mammalian or plant activation in Salmonella strains with different acetyltransferase activities. The hypothesis tested was whether and to what degree a metabolite of DAP or AHP could serve as a subsuata for bacterial O-acetyltransferase and induct mutation in Salmonella. DAP and AHP without activation induced both frameshift and base pair substitution mutations in S. typhimurium strains that exhibited elevated levels of O-acetyltransferase activity. The mutagenicity of DAP and AHP were greatly enhanced with mammalian hepatic microsomal activation resulting in a preferential induction of frameshift mutations. With the hisD3052 allele as the gene target, S9-activated DAP induced frameshift mutations in YG1024 and TA98 as well as the OAT deficient strain TA98/1,8-DNP6. S9-activated AHP induced mutation only in the OAT over-expressing strain, YG1024. With the hisG46 allele, O-acetyltransferase activity was necessary for the metabolism of DAP and AHP to products that induce base pair substitution mutations. An intriguing finding of this work was the antimutagenic capacity of TX1MX, a plant cell-free activation mixture. TX1MX repressed the mutagenic activity of both DAP and AHP at frameshift and base pair substitution mutation targets.
KW - Aminophenazine
KW - Antimutagenic response
KW - Promutagen
UR - http://www.scopus.com/inward/record.url?scp=0006637518&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0006637518&partnerID=8YFLogxK
U2 - 10.1016/S0027-5107(96)00163-7
DO - 10.1016/S0027-5107(96)00163-7
M3 - Article
C2 - 9003532
AN - SCOPUS:0006637518
SN - 0027-5107
VL - 372
SP - 65
EP - 74
JO - Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
JF - Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
IS - 1
ER -