MUSENET: Multi-Scenario Learning for Repeat-Aware Personalized Recommendation

Senrong Xu, Liangyue Li, Yuan Yao, Zulong Chen, Han Wu, Quan Lu, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Personalized recommendation has been instrumental in many real applications. Despite the great progress, the underlying multi-scenario characteristics (e.g., users may behave differently under different scenarios) are largely ignored by existing recommender systems. Intuitively, modeling different scenarios properly could significantly improve the recommendation accuracy, and some existing work has explored this direction. However, these work assumes the scenarios are explicitly given, and thus becomes less effective when such information is unavailable. To complicate things further, proper scenario modeling from data is challenging and the recommendation models may easily overfit to some scenarios. In this paper, we propose a multi-scenario learning framework, MUSENET, for personalized recommendation. The key idea of MUSENET is to learn multiple implicit scenarios from the user behaviors, with a careful design inspired by the causal interpretation of recommender systems to avoid the overfitting issue. Additionally, since users' repeat consumptions account for a large part of the user behavior data on many e-commerce platforms, a repeat-aware mechanism is integrated to handle users' repurchase intentions within each scenario. Comprehensive experimental results on both industrial and public datasets demonstrate the effectiveness of the proposed approach compared with the state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationWSDM 2023 - Proceedings of the 16th ACM International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery
Pages517-525
Number of pages9
ISBN (Electronic)9781450394079
DOIs
StatePublished - Feb 27 2023
Event16th ACM International Conference on Web Search and Data Mining, WSDM 2023 - Singapore, Singapore
Duration: Feb 27 2023Mar 3 2023

Publication series

NameWSDM 2023 - Proceedings of the 16th ACM International Conference on Web Search and Data Mining

Conference

Conference16th ACM International Conference on Web Search and Data Mining, WSDM 2023
Country/TerritorySingapore
CitySingapore
Period2/27/233/3/23

Keywords

  • causal interpretation
  • recommender system
  • repeat intention
  • scenario learning

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'MUSENET: Multi-Scenario Learning for Repeat-Aware Personalized Recommendation'. Together they form a unique fingerprint.

Cite this