TY - GEN
T1 - Multiview discriminative learning for age-invariant face recognition
AU - Sungatullina, Diana
AU - Lu, Jiwen
AU - Wang, Gang
AU - Moulin, Pierre
PY - 2013
Y1 - 2013
N2 - In this paper, we propose a new multiview discriminative learning (MDL) method for age-invariant face recognition, which is a challenging and important problem in many practical face recognition systems. Motivated by the fact that local appearance features are more robust to age variations, we first extract three different local feature descriptors including scale invariant feature transform (SIFT), local binary patterns (LBP) and gradient orientation pyramid (GOP) for each face image to exploit the discriminative information. Then, we develop a discriminative learning method with multiview feature representations, called MDL, to project different types of local features into a latent discriminative subspace where the intraclass variation of each feature is minimized, the interclass variation of each feature and the correlation of different features of the same person are maximized, simultaneously, such that more discriminative information can be boosted for recognition. Experimental results on the widely used MORPH and FG-NET face aging datasets are presented to show the efficiency of the proposed approach.
AB - In this paper, we propose a new multiview discriminative learning (MDL) method for age-invariant face recognition, which is a challenging and important problem in many practical face recognition systems. Motivated by the fact that local appearance features are more robust to age variations, we first extract three different local feature descriptors including scale invariant feature transform (SIFT), local binary patterns (LBP) and gradient orientation pyramid (GOP) for each face image to exploit the discriminative information. Then, we develop a discriminative learning method with multiview feature representations, called MDL, to project different types of local features into a latent discriminative subspace where the intraclass variation of each feature is minimized, the interclass variation of each feature and the correlation of different features of the same person are maximized, simultaneously, such that more discriminative information can be boosted for recognition. Experimental results on the widely used MORPH and FG-NET face aging datasets are presented to show the efficiency of the proposed approach.
UR - http://www.scopus.com/inward/record.url?scp=84881524776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881524776&partnerID=8YFLogxK
U2 - 10.1109/FG.2013.6553724
DO - 10.1109/FG.2013.6553724
M3 - Conference contribution
AN - SCOPUS:84881524776
SN - 9781467355452
T3 - 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013
BT - 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013
T2 - 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013
Y2 - 22 April 2013 through 26 April 2013
ER -