Multiscale modeling of damaged surface topology in a hypersonic boundary

Neil A. Mehta, Deborah A. Levin

Research output: Contribution to journalArticlepeer-review


In this work, we used molecular dynamics (MD) to perform trajectory simulations of ice-like argon and amorphous silica aggregates on atomically smooth highly ordered pyrolytic graphite (HOPG) and a comparatively rougher quartz surface. It was found that at all incidence velocities, the quartz surface was stickier than the HOPG surface. The sticking probabilities and elastic moduli obtained from MD were then used to model surface evolution at a micron length scale using kinetic Monte Carlo (kMC) simulations. Rules were derived to control the number of sites available for the process execution in kMC to accurately model erosion of HOPG by atomic oxygen (AO) attack and ice-nucleation on surfaces. It was observed that the effect of defects was to increase the material erosion rate, while that of aggregate nucleation was to lower it. Similarly, simulations were performed to study the effects of AO attack and N2 adsorption-desorption on surface evolution and it was found that N2 adsorption-desorption limits the surface available for erosion by AO attack.

Original languageEnglish (US)
Article number124710
JournalJournal of Chemical Physics
Issue number12
StatePublished - Sep 28 2019
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Multiscale modeling of damaged surface topology in a hypersonic boundary'. Together they form a unique fingerprint.

Cite this