Multiscale drying and stress-crack formation in corn kernels

Pawan Singh Takhar, Jyoti Hundal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The fluid transport process in the biopolymeric systems exhibit multiscale characteristics. These systems are mainly composed of solid polymeric matrix, vicinal (solvated) fluids and bulk fluids. Transport of fluid is influenced by the relaxation of the surrounding polymers. A generalized integro-differential fluid transport equation, which accounts for the effect of material relaxation on the fluid flow has been developed. Finite element method is being implemented using Comsol Multiphysics for developing the solution scheme for coupling the developed multiscale moisture transport equation with the thermomechanical stress equation. The method is being used for predicting stress-cracking during drying of corn kernels. The required model parameters are moisture diffusivity and stress relaxation function. The dual porosities (high and low permeability channels) of corn kernels are being accounted in the solution scheme. The methodology is flexible and is capable of implementing on biopolymeric systems with other geometric shapes. The model can incorporate heterogeneous, time varying material properties in different domains within the simulation process and accounts for the effect of glass transition on fluid transport.

Original languageEnglish (US)
Title of host publication2007 AIChE Annual Meeting
StatePublished - 2007
Externally publishedYes
Event2007 AIChE Annual Meeting - Salt Lake City, UT, United States
Duration: Nov 4 2007Nov 9 2007

Publication series

NameAIChE Annual Meeting, Conference Proceedings

Other

Other2007 AIChE Annual Meeting
Country/TerritoryUnited States
CitySalt Lake City, UT
Period11/4/0711/9/07

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Chemistry

Fingerprint

Dive into the research topics of 'Multiscale drying and stress-crack formation in corn kernels'. Together they form a unique fingerprint.

Cite this