TY - GEN
T1 - Multiscale drying and stress-crack formation in corn kernels
AU - Takhar, Pawan Singh
AU - Hundal, Jyoti
PY - 2007
Y1 - 2007
N2 - The fluid transport process in the biopolymeric systems exhibit multiscale characteristics. These systems are mainly composed of solid polymeric matrix, vicinal (solvated) fluids and bulk fluids. Transport of fluid is influenced by the relaxation of the surrounding polymers. A generalized integro-differential fluid transport equation, which accounts for the effect of material relaxation on the fluid flow has been developed. Finite element method is being implemented using Comsol Multiphysics for developing the solution scheme for coupling the developed multiscale moisture transport equation with the thermomechanical stress equation. The method is being used for predicting stress-cracking during drying of corn kernels. The required model parameters are moisture diffusivity and stress relaxation function. The dual porosities (high and low permeability channels) of corn kernels are being accounted in the solution scheme. The methodology is flexible and is capable of implementing on biopolymeric systems with other geometric shapes. The model can incorporate heterogeneous, time varying material properties in different domains within the simulation process and accounts for the effect of glass transition on fluid transport.
AB - The fluid transport process in the biopolymeric systems exhibit multiscale characteristics. These systems are mainly composed of solid polymeric matrix, vicinal (solvated) fluids and bulk fluids. Transport of fluid is influenced by the relaxation of the surrounding polymers. A generalized integro-differential fluid transport equation, which accounts for the effect of material relaxation on the fluid flow has been developed. Finite element method is being implemented using Comsol Multiphysics for developing the solution scheme for coupling the developed multiscale moisture transport equation with the thermomechanical stress equation. The method is being used for predicting stress-cracking during drying of corn kernels. The required model parameters are moisture diffusivity and stress relaxation function. The dual porosities (high and low permeability channels) of corn kernels are being accounted in the solution scheme. The methodology is flexible and is capable of implementing on biopolymeric systems with other geometric shapes. The model can incorporate heterogeneous, time varying material properties in different domains within the simulation process and accounts for the effect of glass transition on fluid transport.
UR - http://www.scopus.com/inward/record.url?scp=80053656187&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053656187&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:80053656187
SN - 9780816910229
T3 - AIChE Annual Meeting, Conference Proceedings
BT - 2007 AIChE Annual Meeting
T2 - 2007 AIChE Annual Meeting
Y2 - 4 November 2007 through 9 November 2007
ER -