Multiplexed molecular profiling of prostate cancer specimens using semiconductor quantum dot bioconjugates

Yun Xing, Takeo Numora, Leland Chung, Haiyen Zhau, Shuming Nie

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Quantum dots (QDs) are light emitting semi-conductor nanocrystals with novel optical properties including superior photostability, narrow emission spectra with continuous excitation spectra. These properties make QDs especially suitable for multiplexed fluorescent labeling, live cell imaging, and in vivo animal imaging. The multiplexing potential has been recognized but real applications of biological/clinical significance are few. In this study, we used quantum dots to study epithelial mesenchymal transition (EMT), an important process involved in the bone metastasis of prostate cancer. Two prostate cancer cells lines with distinct molecular profiles, representing the two ends of the EMT process, were selected for this study. Four EMT-related biomarkers including E-cadherin, N-cadherin, Vimentin, and RANKL were stained with QD-antibody conjugates with elongation factor 1 alpha as the internal control. Morphological information of the QD-stained cells was obtained by digital-color imaging and quantitative information obtained by spectra analysis using a spectrometer. Two types of analysis were performed: abundance of each biomarker in the same cell line relative to the internal control; and the relative abundance of these markers between the two cell lines. Our results demonstrate the feasibility of QDs for multiplexed profiling of FFPE cells/tissue of clinical significance; however, the standardization and quantification still awaits optimization.

Original languageEnglish (US)
Title of host publicationColloidal Quantum Dots for Biomedical Applications II
StatePublished - 2007
Externally publishedYes
EventColloidal Quantum Dots for Biomedical Applications II - San Jose, CA, United States
Duration: Jan 20 2007Jan 23 2007

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherColloidal Quantum Dots for Biomedical Applications II
Country/TerritoryUnited States
CitySan Jose, CA


  • Biomarkers
  • EMT
  • FFPE specimen
  • Molecular profiling
  • Prostate cancer
  • Quantum dots
  • Spectral imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials


Dive into the research topics of 'Multiplexed molecular profiling of prostate cancer specimens using semiconductor quantum dot bioconjugates'. Together they form a unique fingerprint.

Cite this