Multiplex confounding factor correction for genomic association mapping with squared sparse linear mixed model

Haohan Wang, Xiang Liu, Yunpeng Xiao, Ming Xu, Eric P. Xing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Genome-wide Association Study has presented a promising way to understand the association between human genomes and complex traits. Many simple polymorphic loci have been shown to explain a significant fraction of phenotypic variability. However, challenges remain in the non-triviality of explaining complex traits associated with multifactorial genetic loci, especially considering the confounding factors caused by population structure, family structure, and cryptic relatedness. In this paper, we propose a Squared-LMM (LMM2) model, aiming to jointly correct population and genetic confounding factors. We offer two strategies of utilizing LMM2 for association mapping: 1) It serves as an extension of univariate LMM, which could effectively correct population structure, but consider each SNP in isolation. 2) It is integrated with the multivariate regression model to discover association relationship between complex traits and multifactorial genetic loci. We refer to this second model as sparse Squared-LMM (sLMM2). Further, we extend LMM2/sLMM2 by raising the power of our squared model to the LMMn/sLMMn model. We demonstrate the practical use of our model with synthetic phenotypic variants generated from genetic loci of Arabidopsis Thaliana. The experiment shows that our method achieves a more accurate and significant prediction on the association relationship between traits and loci. We also evaluate our models on collected phenotypes and genotypes with the number of candidate genes that the models could discover. The results suggest the potential and promising usage of our method in genome-wide association studies.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
EditorsIllhoi Yoo, Jane Huiru Zheng, Yang Gong, Xiaohua Tony Hu, Chi-Ren Shyu, Yana Bromberg, Jean Gao, Dmitry Korkin
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages194-201
Number of pages8
ISBN (Electronic)9781509030491
DOIs
StatePublished - Dec 15 2017
Externally publishedYes
Event2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 - Kansas City, United States
Duration: Nov 13 2017Nov 16 2017

Other

Other2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Country/TerritoryUnited States
CityKansas City
Period11/13/1711/16/17

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Multiplex confounding factor correction for genomic association mapping with squared sparse linear mixed model'. Together they form a unique fingerprint.

Cite this