Multiple rereads of single proteins at single-amino acid resolution using nanopores

Henry Brinkerhoff, Albert S.W. Kang, Jingqian Liu, Aleksei Aksimentiev, Cees Dekker

Research output: Contribution to journalArticlepeer-review

Abstract

A proteomics tool capable of identifying single proteins would be important for cell biology research and applications. Here, we demonstrate a nanopore-based single-molecule peptide reader sensitive to single-amino acid substitutions within individual peptides. A DNA-peptide conjugate was pulled through the biological nanopore MspA by the DNA helicase Hel308. Reading the ion current signal through the nanopore enabled discrimination of single-amino acid substitutions in single reads. Molecular dynamics simulations showed these signals to result from size exclusion and pore binding. We also demonstrate the capability to "rewind" peptide reads, obtaining numerous independent reads of the same molecule, yielding an error rate of <10-6 in single amino acid variant identification. These proof-of-concept experiments constitute a promising basis for the development of a singlemolecule protein fingerprinting and analysis technology.

Original languageEnglish (US)
Pages (from-to)1509-1513
Number of pages5
JournalScience
Volume374
Issue number6574
DOIs
StatePublished - Dec 17 2021
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Multiple rereads of single proteins at single-amino acid resolution using nanopores'. Together they form a unique fingerprint.

Cite this