Multiple confounders correction with regularized linear mixed effect models, with application in biological processes

Haohan Wang, Jingkang Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we inspect the performance of regularized linear mixed effect models, as an extension of linear mixed effect model, when multiple confounding factors coexist. We first review its parameter estimation algorithms before we introduce three different methods for multiple confounding factors correction, namely concatenation, sequence, and interpolation. Then we investigate the performance on variable selection task and predictive task on three different data sets, synthetic data set, semi-empirical synthetic data set based on genome sequences and brain wave data set connecting to confused mental states. Our results suggest that sequence multiple confounding factors corrections behave the best when different confounders contribute equally to response variables. On the other hand, when various confounders affect the response variable unevenly, results mainly rely on the degree of how the major confounder is corrected.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
EditorsKevin Burrage, Qian Zhu, Yunlong Liu, Tianhai Tian, Yadong Wang, Xiaohua Tony Hu, Qinghua Jiang, Jiangning Song, Shinichi Morishita, Kevin Burrage, Guohua Wang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1561-1568
Number of pages8
ISBN (Electronic)9781509016105
DOIs
StatePublished - 2016
Externally publishedYes
Event2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016 - Shenzhen, China
Duration: Dec 15 2016Dec 18 2016

Other

Other2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
Country/TerritoryChina
CityShenzhen
Period12/15/1612/18/16

Keywords

  • Confounding factors correction
  • Linear mixed model
  • Multiple confounding factors

ASJC Scopus subject areas

  • Genetics
  • Medicine (miscellaneous)
  • Genetics(clinical)
  • Biochemistry, medical
  • Biochemistry
  • Molecular Medicine
  • Health Informatics

Fingerprint

Dive into the research topics of 'Multiple confounders correction with regularized linear mixed effect models, with application in biological processes'. Together they form a unique fingerprint.

Cite this