Multifunctional structures for attitude control

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Engineering Systems Design Lab (ESDL) at the University of Illinois introduced Strain-Actuated Solar Arrays (SASAs) as a solution for precise satellite Attitude Control System (ACSs). SASA is designed to provide active mechanical vibration (jitter) cancellation, as well as small slew maneuver capabilities to hold a pose for short time periods. Current SASA implementations utilize piezoelectric distributed actuators to strain deployable structures, and the resulting momentum transfer rotates the spacecraft bus. A core disadvantage, however, is small strain and slew capability. Initial SASA systems could help improve pointing accuracy, but must be coupled with another ACS technology to produce large reorientations. A novel extension of the original SASA system is presented here that overcomes the small-displacement limitation, enabling use of SASA as a sole ACS for some missions, or in conjunction with other ACSs. This extension, known as Multifunctional Structures for Attitude Control (MSAC), can produce arbitrarily-large rotations, and has the potential to scale to large spacecraft. The system utilizes existing flexible deployable structures (such as solar arrays or radiators) as multifunctional devices. This multi-role use of solar panels extends their utility at a low mass penalty, while increasing reliability of the spacecraft ACS.

Original languageEnglish (US)
Title of host publicationASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859131
DOIs
StatePublished - Jan 1 2019
EventASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019 - Louisville, United States
Duration: Sep 9 2019Sep 11 2019

Publication series

NameASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019

Conference

ConferenceASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019
CountryUnited States
CityLouisville
Period9/9/199/11/19

ASJC Scopus subject areas

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Multifunctional structures for attitude control'. Together they form a unique fingerprint.

  • Cite this

    Vedant, & Allison, J. T. (2019). Multifunctional structures for attitude control. In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019 (ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/SMASIS2019-5565