TY - GEN
T1 - Multifunctional structures for attitude control
AU - Vedant,
AU - Allison, James T.
N1 - Funding Information:
This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI-1653118.
Publisher Copyright:
© 2019 ASME
PY - 2019
Y1 - 2019
N2 - The Engineering Systems Design Lab (ESDL) at the University of Illinois introduced Strain-Actuated Solar Arrays (SASAs) as a solution for precise satellite Attitude Control System (ACSs). SASA is designed to provide active mechanical vibration (jitter) cancellation, as well as small slew maneuver capabilities to hold a pose for short time periods. Current SASA implementations utilize piezoelectric distributed actuators to strain deployable structures, and the resulting momentum transfer rotates the spacecraft bus. A core disadvantage, however, is small strain and slew capability. Initial SASA systems could help improve pointing accuracy, but must be coupled with another ACS technology to produce large reorientations. A novel extension of the original SASA system is presented here that overcomes the small-displacement limitation, enabling use of SASA as a sole ACS for some missions, or in conjunction with other ACSs. This extension, known as Multifunctional Structures for Attitude Control (MSAC), can produce arbitrarily-large rotations, and has the potential to scale to large spacecraft. The system utilizes existing flexible deployable structures (such as solar arrays or radiators) as multifunctional devices. This multi-role use of solar panels extends their utility at a low mass penalty, while increasing reliability of the spacecraft ACS.
AB - The Engineering Systems Design Lab (ESDL) at the University of Illinois introduced Strain-Actuated Solar Arrays (SASAs) as a solution for precise satellite Attitude Control System (ACSs). SASA is designed to provide active mechanical vibration (jitter) cancellation, as well as small slew maneuver capabilities to hold a pose for short time periods. Current SASA implementations utilize piezoelectric distributed actuators to strain deployable structures, and the resulting momentum transfer rotates the spacecraft bus. A core disadvantage, however, is small strain and slew capability. Initial SASA systems could help improve pointing accuracy, but must be coupled with another ACS technology to produce large reorientations. A novel extension of the original SASA system is presented here that overcomes the small-displacement limitation, enabling use of SASA as a sole ACS for some missions, or in conjunction with other ACSs. This extension, known as Multifunctional Structures for Attitude Control (MSAC), can produce arbitrarily-large rotations, and has the potential to scale to large spacecraft. The system utilizes existing flexible deployable structures (such as solar arrays or radiators) as multifunctional devices. This multi-role use of solar panels extends their utility at a low mass penalty, while increasing reliability of the spacecraft ACS.
UR - http://www.scopus.com/inward/record.url?scp=85084098227&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084098227&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2019-5565
DO - 10.1115/SMASIS2019-5565
M3 - Conference contribution
AN - SCOPUS:85084098227
T3 - ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019
BT - ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019
Y2 - 9 September 2019 through 11 September 2019
ER -