Multidisciplinary design optimization of dynamic engineering systems

James T. Allison, Daniel R. Herber

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Dynamic engineering systems are playing an increasingly important role in society, especially as active and autonomous dynamic systems become more mature and prevalent across a variety of domains. Successful design of complex dynamic systems requires multidisciplinary analysis and design techniques. While multidisciplinary design optimization (MDO) has been used successfully for the development of many dynamic systems, the established MDO formulations were developed around fundamentally static system models. We still lack general MDO approaches that address the specific needs of dynamic system design. In this article we review the use of MDO for dynamic system design, identify associated challenges, discuss related efforts such as optimal control, and present a vision for fully integrated design approaches. Finally, we lay out a set of exciting new directions that provide an opportunity for fundamental work in MDO.

Original languageEnglish (US)
Title of host publication54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
DOIs
StatePublished - 2013
Event54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Boston, MA, United States
Duration: Apr 8 2013Apr 11 2013

Publication series

Name54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Other

Other54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Country/TerritoryUnited States
CityBoston, MA
Period4/8/134/11/13

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanics of Materials
  • Building and Construction
  • Architecture

Fingerprint

Dive into the research topics of 'Multidisciplinary design optimization of dynamic engineering systems'. Together they form a unique fingerprint.

Cite this