Multidimensional filter banks and multiscale geometric representations

Minh N. Do, Yue M. Lu

Research output: Contribution to journalArticlepeer-review

Abstract

Thanks to the explosive growth of sensing devices and capabilities, multidimensional (MD) signals - such as images, videos, multispectral images, light fields, and biomedical data volumes - have become ubiquitous. Multidimensional filter banks and the associated constructions provide a unified framework and an efficient computational tool in the formation, representation, and processing of these multidimensional data sets. In this survey we aim to provide a systematic development of the theory and constructions of multidimensional filter banks. We thoroughly review several tools that have been shown to be particularly effective in the design and analysis of multidimensional filter banks, including sampling lattices, multidimensional bases and frames, polyphase representations, Gröbner bases, mapping methods, frequency domain constructions, ladder structures and lifting schemes. We then focus on the construction of filter banks and signal representations that can capture directional and geometric features, which are unique and key properties of many multidimensional signals. Next, we study the connection between iterated multidimensional filter banks in the discrete domain and the associated multiscale signal representations in the continuous domain through a directional multiresolution analysis framework. Finally, we show several examples to demonstrate the power of multidimensional filter banks and geometric signal representations in applications.

Original languageEnglish (US)
Pages (from-to)157-264
Number of pages108
JournalFoundations and Trends in Signal Processing
Volume5
Issue number3
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • Signal Processing

Fingerprint

Dive into the research topics of 'Multidimensional filter banks and multiscale geometric representations'. Together they form a unique fingerprint.

Cite this