## Abstract

The interplay between electron-electron and electron-proton correlation is investigated within the framework of the nuclear-electronic orbital density functional theory (NEO-DFT) approach, which treats electrons and select protons quantum mechanically on the same level. Recently two electron-proton correlation functionals were developed from the electron-proton pair densities obtained from explicitly correlated wavefunctions. In these previous derivations, the kinetic energy contribution arising from electron-proton correlation was neglected. In this paper, an electron-proton correlation functional that includes this kinetic energy contribution is derived using the adiabatic connection formula in multicomponent DFT. The performance of the NEO-DFT approach using all three electron-proton correlation functionals in conjunction with three well-established electronic exchange-correlation functionals is assessed. NEO-DFT calculations with these electron-proton correlation functionals capture the increase in the hydrogen vibrational stretching frequencies arising from the inclusion of electron-electron correlation in model systems. Electron-proton and electron-electron correlation are found to be uncoupled and predominantly additive effects to the total energy for the model systems studied. Thus, electron-proton correlation functionals and electronic exchange-correlation functionals can be developed independently and subsequently combined together without re-parameterization.

Original language | English (US) |
---|---|

Article number | 174114 |

Journal | Journal of Chemical Physics |

Volume | 136 |

Issue number | 17 |

DOIs | |

State | Published - May 7 2012 |

Externally published | Yes |

## ASJC Scopus subject areas

- General Physics and Astronomy
- Physical and Theoretical Chemistry