Multi-wafer virtual probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation

Wangyang Zhang, Xin Li, Emrah Acar, Frank Liu, Rob Rutenbar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose a new technique, referred to as MultiWafer Virtual Probe (MVP) to efficiently model wafer-level spatial variations for nanoscale integrated circuits. Towards this goal, a novel Bayesian inference is derived to extract a shared model template to explore the wafer-to-wafer correlation information within the same lot. In addition, a robust regression algorithm is proposed to automatically detect and remove outliers (i.e., abnormal measurement data with large error) so that they do not bias the modeling results. The proposed MVP method is extensively tested for silicon measurement data collected from 200 wafers at an advanced technology node. Our experimental results demonstrate that MVP offers superior accuracy over other traditional approaches such as VP [7] and EM [8], if a limited number of measurement data are available.

Original languageEnglish (US)
Title of host publication2010 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages47-54
Number of pages8
ISBN (Print)9781424481927
DOIs
StatePublished - 2010
Event2010 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2010 - San Jose, CA, United States
Duration: Nov 7 2010Nov 11 2010

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
ISSN (Print)1092-3152

Other

Other2010 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2010
Country/TerritoryUnited States
CitySan Jose, CA
Period11/7/1011/11/10

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Multi-wafer virtual probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation'. Together they form a unique fingerprint.

Cite this