Multi-stage convex relaxation for learning with sparse regularization

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study learning formulations with non-convex regularizaton that are natural for sparse linear models. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization that solves the problem under some conditions. However it often leads to sub-optimal sparsity in reality. This paper tries to remedy the above gap between theory and practice. In particular, we investigate a multi-stage convex relaxation scheme for solving problems with non-convex regularization. Theoretically, we analyze the behavior of a resulting two-stage relaxation scheme for the capped-L1 regularization. Our performance bound shows that the procedure is superior to the standard L 1 convex relaxation for learning sparse targets. Experiments confirm the effectiveness of this method on some simulation and real data.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PublisherNeural Information Processing Systems
Pages1929-1936
Number of pages8
ISBN (Print)9781605609492
StatePublished - 2009
Externally publishedYes
Event22nd Annual Conference on Neural Information Processing Systems, NIPS 2008 - Vancouver, BC, Canada
Duration: Dec 8 2008Dec 11 2008

Publication series

NameAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference

Other

Other22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Country/TerritoryCanada
CityVancouver, BC
Period12/8/0812/11/08

ASJC Scopus subject areas

  • Information Systems

Fingerprint

Dive into the research topics of 'Multi-stage convex relaxation for learning with sparse regularization'. Together they form a unique fingerprint.

Cite this