Abstract
To achieve high-levels of autonomy, modern robots require the ability to detect and recover from anomalies and failures with minimal human supervision. Multi-modal sensor signals could provide more information for such anomaly detection tasks; however, the fusion of high-dimensional and heterogeneous sensor modalities remains a challenging problem. We propose a deep learning neural network: supervised variational autoencoder (SVAE), for failure identification in unstructured and uncertain environments. Our model leverages the representational power of VAE to extract robust features from high-dimensional inputs for supervised learning tasks. The training objective unifies the generative model and the discriminative model, thus making the learning a one-stage procedure. Our experiments on real field robot data demonstrate superior failure identification performance than baseline methods, and that our model learns interpretable representations.
Original language | English (US) |
---|---|
Pages (from-to) | 1443-1455 |
Number of pages | 13 |
Journal | Proceedings of Machine Learning Research |
Volume | 155 |
State | Published - 2020 |
Event | 4th Conference on Robot Learning, CoRL 2020 - Virtual, Online, United States Duration: Nov 16 2020 → Nov 18 2020 |
Keywords
- Anomaly Detection
- Feature Learning
- Field Robots
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability