TY - GEN
T1 - Multi-GPU PIC solver for modeling of ion thruster plasma plume
AU - Jambunathan, Revathi
AU - Levin, Deborah A.
N1 - Funding Information:
project, which is supported by the National Science Foundation (awards OCI-0725070 and
Funding Information:
We are grateful for the funding support provided by AFOSR through the Grant AF FA9550-16-1-0193. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. We also acknowledge Xsede for the start-up allocation on XStream. We gratefully acknowledge Prof. Vincent Le Chenadec for the valuable discussions on the Poisson Solver implementation.
Publisher Copyright:
© 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2018
Y1 - 2018
N2 - Three-dimensional particle-in-cell simulations are performed to study the characteristics of xenon mesothermal plasma plumes and their interaction with the neutralizer electrons. To study the effect of electron source location on the plume dynamics and electron kinetics, two configurations are modeled, one with co-located electron and ion sources and the second with a shifted electron source. In addition, the effect of electrostatic boundary condition on the plume dynamics of the shifted electron case are also studied by implementing a fixed Dirichlet boundary condition of φ =0 V at all the boundaries. In the first case, the plume achieved a quasi-neutral state by the electrostatic trapping of electrons within the confined xenon ion plume. For the shifted electron source, however, no such symmetry was observed and the electrons are found to oscillate, resulting in counterstreaming electron populations. Compared to the Neumann boundary condition, the case with the Dirichlet boundary condition was found to affect the electron velocities as the beam-front approached closer to the boundary, consequently affecting the plume dynamics.
AB - Three-dimensional particle-in-cell simulations are performed to study the characteristics of xenon mesothermal plasma plumes and their interaction with the neutralizer electrons. To study the effect of electron source location on the plume dynamics and electron kinetics, two configurations are modeled, one with co-located electron and ion sources and the second with a shifted electron source. In addition, the effect of electrostatic boundary condition on the plume dynamics of the shifted electron case are also studied by implementing a fixed Dirichlet boundary condition of φ =0 V at all the boundaries. In the first case, the plume achieved a quasi-neutral state by the electrostatic trapping of electrons within the confined xenon ion plume. For the shifted electron source, however, no such symmetry was observed and the electrons are found to oscillate, resulting in counterstreaming electron populations. Compared to the Neumann boundary condition, the case with the Dirichlet boundary condition was found to affect the electron velocities as the beam-front approached closer to the boundary, consequently affecting the plume dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85141594238&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141594238&partnerID=8YFLogxK
U2 - 10.2514/6.2018-1297
DO - 10.2514/6.2018-1297
M3 - Conference contribution
AN - SCOPUS:85141594238
SN - 9781624105241
T3 - AIAA Aerospace Sciences Meeting, 2018
BT - AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aerospace Sciences Meeting, 2018
Y2 - 8 January 2018 through 12 January 2018
ER -