@inproceedings{15e64e5f71ad4e74a507c85a84b04510,
title = "Multi-Attribute Topic Feature Construction for Social Media-based Prediction",
abstract = "The effectiveness of social media-based prediction highly depends on whether we can construct effective content-based features based on social media text data. Features constructed based on topics learned using a topic model are very attractive due to their expressiveness in semantic representation and accommodation of inexact matching of semantically related words. We develop a novel general framework for constructing multi-attribute topic features using multi-views of the text data defined according to metadata attributes and study their effectiveness for a text-based prediction task. Furthermore we propose and study multiple weighting strategies to align text-based features and prediction outcomes. We evaluate the proposed method on a Twitter corpus of over 100 million tweets collected over a seven year period in 2009-2015 to predict human immunodeficiency virus (HIV) new diagnosis and other sexually transmitted infections (STIs) new diagnosis in the United States at the zipcode-level and county-level resolutions. The results show that feature representations based on attributes such as authors, locations, and hashtags are generally more effective than the conventional topic feature representation.",
author = "Alex Morales and Nupoor Gandhi and Chan, {Man Pui Sally} and Sophie Lohmann and Travis Sanchez and Brady, {Kathleen A.} and Lyle Ungar and Dolores Albarrac{\'i}n and Chengxiang Zhai",
note = "Publisher Copyright: {\textcopyright} 2018 IEEE.; 2018 IEEE International Conference on Big Data, Big Data 2018 ; Conference date: 10-12-2018 Through 13-12-2018",
year = "2018",
month = jul,
day = "2",
doi = "10.1109/BigData.2018.8622347",
language = "English (US)",
series = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1073--1078",
editor = "Naoki Abe and Huan Liu and Calton Pu and Xiaohua Hu and Nesreen Ahmed and Mu Qiao and Yang Song and Donald Kossmann and Bing Liu and Kisung Lee and Jiliang Tang and Jingrui He and Jeffrey Saltz",
booktitle = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
address = "United States",
}