Multi-agent dual learning

Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, Cheng Xiang Zhai, Tie Yan Liu

Research output: Contribution to conferencePaperpeer-review

Abstract

Dual learning has attracted much attention in machine learning, computer vision and natural language processing communities. The core idea of dual learning is to leverage the duality between the primal task (mapping from domain X to domain Y) and dual task (mapping from domain Y to X) to boost the performances of both tasks. Existing dual learning framework forms a system with two agents (one primal model and one dual model) to utilize such duality. In this paper, we extend this framework by introducing multiple primal and dual models, and propose the multi-agent dual learning framework. Experiments on neural machine translation and image translation tasks demonstrate the effectiveness of the new framework. In particular, we set a new record on IWSLT 2014 German-to-English translation with a 35.44 BLEU score, achieve a 31.03 BLEU score on WMT 2014 English-to-German translation with over 2.6 BLEU improvement over the strong Transformer baseline, and set a new record of 49.61 BLEU score on the recent WMT 2018 English-to-German translation.

Original languageEnglish (US)
StatePublished - 2019
Event7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States
Duration: May 6 2019May 9 2019

Conference

Conference7th International Conference on Learning Representations, ICLR 2019
Country/TerritoryUnited States
CityNew Orleans
Period5/6/195/9/19

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Multi-agent dual learning'. Together they form a unique fingerprint.

Cite this