TY - GEN
T1 - MRMine
T2 - 28th ACM International Conference on Information and Knowledge Management, CIKM 2019
AU - Du, Boxin
AU - Tong, Hanghang
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/11/3
Y1 - 2019/11/3
N2 - Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework (MrMine) to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficient and scalable, with a O(nloд(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks.
AB - Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework (MrMine) to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficient and scalable, with a O(nloд(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks.
KW - Cross-resolution cross-network context
KW - Multi-network mining
KW - Network embedding
KW - Unified framework
UR - http://www.scopus.com/inward/record.url?scp=85075479646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075479646&partnerID=8YFLogxK
U2 - 10.1145/3357384.3357944
DO - 10.1145/3357384.3357944
M3 - Conference contribution
AN - SCOPUS:85075479646
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 479
EP - 488
BT - CIKM 2019 - Proceedings of the 28th ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
Y2 - 3 November 2019 through 7 November 2019
ER -