TY - JOUR
T1 - Motif magnetism and quantum many-body scars
AU - Chertkov, Eli
AU - Clark, Bryan K.
N1 - Funding Information:
We acknowledge useful discussions with Hitesh Changlani. We thank Berislav Buča for providing helpful comments on “dynamical symmetries.” We thank an anonymous referee for their helpful comments that pointed our attention to the symmetry in our model. Our TEBD calculations were done using the julia version of the itensor library . We acknowledge support from Department of Energy Award No. DOE de-sc0020165.
Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - We generally expect quantum systems to thermalize and satisfy the eigenstate thermalization hypothesis (ETH), which states that finite-energy-density eigenstates are thermal. However, some systems, such as many-body localized systems and systems with quantum many-body scars, violate ETH and have high-energy athermal eigenstates. In systems with scars, most eigenstates thermalize, but a few atypical scar states do not. Scar states can give rise to a periodic revival when time-evolving particular initial product states, which can be detected experimentally. Recently, a family of spin Hamiltonians was found with magnetically ordered three-colored eigenstates that are quantum many-body scars [Lee, Phys. Rev. B 101, 241111(R) (2020)2469-995010.1103/PhysRevB.101.241111]. These models can be realized in any lattice that can be tiled by triangles, such as the triangular or kagome lattices, and have been shown to have close connections to the physics of quantum spin liquids in the Heisenberg kagome antiferromagnet. In this paper, we introduce a generalized family of n-colored Hamiltonians with "spiral colored"eigenstates made from n-spin motifs such as polygons or polyhedra. We show how these models can be realized in many different lattice geometries and provide numerical evidence that they can exhibit quantum many-body scars with periodic revivals that can be observed by time-evolving simple product states. The simple structure of these Hamiltonians makes them promising candidates for future experimental studies of quantum many-body scars.
AB - We generally expect quantum systems to thermalize and satisfy the eigenstate thermalization hypothesis (ETH), which states that finite-energy-density eigenstates are thermal. However, some systems, such as many-body localized systems and systems with quantum many-body scars, violate ETH and have high-energy athermal eigenstates. In systems with scars, most eigenstates thermalize, but a few atypical scar states do not. Scar states can give rise to a periodic revival when time-evolving particular initial product states, which can be detected experimentally. Recently, a family of spin Hamiltonians was found with magnetically ordered three-colored eigenstates that are quantum many-body scars [Lee, Phys. Rev. B 101, 241111(R) (2020)2469-995010.1103/PhysRevB.101.241111]. These models can be realized in any lattice that can be tiled by triangles, such as the triangular or kagome lattices, and have been shown to have close connections to the physics of quantum spin liquids in the Heisenberg kagome antiferromagnet. In this paper, we introduce a generalized family of n-colored Hamiltonians with "spiral colored"eigenstates made from n-spin motifs such as polygons or polyhedra. We show how these models can be realized in many different lattice geometries and provide numerical evidence that they can exhibit quantum many-body scars with periodic revivals that can be observed by time-evolving simple product states. The simple structure of these Hamiltonians makes them promising candidates for future experimental studies of quantum many-body scars.
UR - http://www.scopus.com/inward/record.url?scp=85114484815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114484815&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.104.104410
DO - 10.1103/PhysRevB.104.104410
M3 - Article
AN - SCOPUS:85114484815
SN - 2469-9950
VL - 104
JO - Physical Review B
JF - Physical Review B
IS - 10
M1 - 104410
ER -