Motif magnetism and quantum many-body scars

Eli Chertkov, Bryan K. Clark

Research output: Contribution to journalArticlepeer-review

Abstract

We generally expect quantum systems to thermalize and satisfy the eigenstate thermalization hypothesis (ETH), which states that finite-energy-density eigenstates are thermal. However, some systems, such as many-body localized systems and systems with quantum many-body scars, violate ETH and have high-energy athermal eigenstates. In systems with scars, most eigenstates thermalize, but a few atypical scar states do not. Scar states can give rise to a periodic revival when time-evolving particular initial product states, which can be detected experimentally. Recently, a family of spin Hamiltonians was found with magnetically ordered three-colored eigenstates that are quantum many-body scars [Lee, Phys. Rev. B 101, 241111(R) (2020)2469-995010.1103/PhysRevB.101.241111]. These models can be realized in any lattice that can be tiled by triangles, such as the triangular or kagome lattices, and have been shown to have close connections to the physics of quantum spin liquids in the Heisenberg kagome antiferromagnet. In this paper, we introduce a generalized family of n-colored Hamiltonians with "spiral colored"eigenstates made from n-spin motifs such as polygons or polyhedra. We show how these models can be realized in many different lattice geometries and provide numerical evidence that they can exhibit quantum many-body scars with periodic revivals that can be observed by time-evolving simple product states. The simple structure of these Hamiltonians makes them promising candidates for future experimental studies of quantum many-body scars.

Original languageEnglish (US)
Article number104410
JournalPhysical Review B
Volume104
Issue number10
DOIs
StatePublished - Sep 1 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Motif magnetism and quantum many-body scars'. Together they form a unique fingerprint.

Cite this