TY - JOUR
T1 - Moringa oleifera leaves alleviated inflammation through downregulation of IL-2, IL-6, and TNF-α in a colitis-associated colorectal cancer model
AU - Cuellar-Núñez, M. L.
AU - Gonzalez de Mejia, E.
AU - Loarca-Piña, G.
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/6
Y1 - 2021/6
N2 - New chemopreventive alternatives are needed due to the rising worldwide incidence of colorectal cancer. The objective was to evaluate the chemopreventive activity of Moringa oleifera leaves (MO) in a colitis-associated colon carcinogenesis model. We hypothesized that MO contain bioactive compounds capable of modulating the expression of genes involved in the inflammatory response and carcinogenesis. Forty-eight male mice (CD-1) were divided into six groups; 1: Healthy control; 2: Positive control induced with azoxymethane (AOM, 10 mg/Kg body weight, intraperitoneal injection) and three cycles of dextran sodium sulfate (DSS, 1.5% in drinking water); groups 3, 4, and 5 were induced with AOM/DSS and supplemented with 5%, 10%, and 20% of MO, respectively; group 6: had no disease induction and supplemented with 20% of MO. Mice were treated for 12 weeks and euthanized. Significant differences (p < 0.05) were found for the moringa-administered groups in morphological and histopathological parameters compared to the AOM/DSS control. A decrease in myeloperoxidase activity (~50%) and lipid peroxidation (1.9–3.1 times) were found in groups with 10% and 20% of MO compared to the AOM/DSS control (p < 0.05). The group supplemented with 10% MO showed a significant increase (~3 times) in butyrate and propionate in fecal and cecal content. Groups supplemented with 10%, and 20% MO showed a reduction in proinflammatory cytokines in serum (MCP-1, IL-6, TNF-α) compared to the AOM/DSS control. Treatment with 10% MO induced differential expression of 65 genes in colon tissue such as IL-2, IL-6, TNF, IL-1ß, and INF-γ. MO downregulated proinflammatory mediators showing chemopreventive properties against inflammatory response and colon carcinogenesis.
AB - New chemopreventive alternatives are needed due to the rising worldwide incidence of colorectal cancer. The objective was to evaluate the chemopreventive activity of Moringa oleifera leaves (MO) in a colitis-associated colon carcinogenesis model. We hypothesized that MO contain bioactive compounds capable of modulating the expression of genes involved in the inflammatory response and carcinogenesis. Forty-eight male mice (CD-1) were divided into six groups; 1: Healthy control; 2: Positive control induced with azoxymethane (AOM, 10 mg/Kg body weight, intraperitoneal injection) and three cycles of dextran sodium sulfate (DSS, 1.5% in drinking water); groups 3, 4, and 5 were induced with AOM/DSS and supplemented with 5%, 10%, and 20% of MO, respectively; group 6: had no disease induction and supplemented with 20% of MO. Mice were treated for 12 weeks and euthanized. Significant differences (p < 0.05) were found for the moringa-administered groups in morphological and histopathological parameters compared to the AOM/DSS control. A decrease in myeloperoxidase activity (~50%) and lipid peroxidation (1.9–3.1 times) were found in groups with 10% and 20% of MO compared to the AOM/DSS control (p < 0.05). The group supplemented with 10% MO showed a significant increase (~3 times) in butyrate and propionate in fecal and cecal content. Groups supplemented with 10%, and 20% MO showed a reduction in proinflammatory cytokines in serum (MCP-1, IL-6, TNF-α) compared to the AOM/DSS control. Treatment with 10% MO induced differential expression of 65 genes in colon tissue such as IL-2, IL-6, TNF, IL-1ß, and INF-γ. MO downregulated proinflammatory mediators showing chemopreventive properties against inflammatory response and colon carcinogenesis.
KW - Colitis-associated carcinogenesis
KW - IL-6
KW - Inflammation
KW - Moringa (Moringa oleifera) leaves
KW - Myeloperoxidase activity
KW - TNF-α
UR - http://www.scopus.com/inward/record.url?scp=85103693306&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103693306&partnerID=8YFLogxK
U2 - 10.1016/j.foodres.2021.110318
DO - 10.1016/j.foodres.2021.110318
M3 - Article
C2 - 34053523
AN - SCOPUS:85103693306
SN - 0963-9969
VL - 144
JO - Food Research International
JF - Food Research International
M1 - 110318
ER -