More than the sum of its parts: Combining parametrized tests of extreme gravity

Hector O. Silva, Nicolás Yunes

Research output: Contribution to journalArticlepeer-review


We connect two formalisms that describe deformations away from general relativity, one valid in the strong-field regime of neutrons stars and another valid in the radiative regime of gravitational waves: the post-Tolman-Oppenheimer-Volkoff and the parametrized-post-Einsteinian formalisms respectively. We find that post-Tolman-Oppenheimer-Volkoff deformations of the exterior metric of an isolated neutron star induce deformations in the orbital binding energy of a neutron star binary. Such a modification to the binding energy then percolates into the gravitational waves emitted by such a binary, with the leading-order post-Tolman-Oppenheimer-Volkoff modifications introducing a second post-Newtonian order correction to the gravitational wave phase. The lack of support in gravitational wave data for general relativity deformations at this post-Newtonian order can then be used to place constraints on the post-Tolman-Oppenheimer-Volkoff parameters. As an application, we use the binary neutron star merger event GW170817 to place the constraint -2.4≤χ≤44 (at 90% credibility) on a combination of post-Tolman-Oppenheimer-Volkoff parameters. We also explore the implications of this result to the possible deformations of the mass-radius relation of neutron stars allowed within this formalism. This work opens the path towards theory-independent tests of gravity, combining astronomical observations of neutron stars and gravitational wave observations.

Original languageEnglish (US)
Article number084034
JournalPhysical Review D
Issue number8
StatePublished - Oct 15 2019
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'More than the sum of its parts: Combining parametrized tests of extreme gravity'. Together they form a unique fingerprint.

Cite this