Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos

Andrew F. Cheng, Harrison F. Agrusa, Brent W. Barbee, Alex J. Meyer, Tony L. Farnham, Sabina D. Raducan, Derek C. Richardson, Elisabetta Dotto, Angelo Zinzi, Vincenzo Della Corte, Thomas S. Statler, Steven Chesley, Shantanu P. Naidu, Masatoshi Hirabayashi, Jian Yang Li, Siegfried Eggl, Olivier S. Barnouin, Nancy L. Chabot, Sidney Chocron, Gareth S. CollinsR. Terik Daly, Thomas M. Davison, Mallory E. DeCoster, Carolyn M. Ernst, Fabio Ferrari, Dawn M. Graninger, Seth A. Jacobson, Martin Jutzi, Kathryn M. Kumamoto, Robert Luther, Joshua R. Lyzhoft, Patrick Michel, Naomi Murdoch, Ryota Nakano, Eric Palmer, Andrew S. Rivkin, Daniel J. Scheeres, Angela M. Stickle, Jessica M. Sunshine, Josep M. Trigo-Rodriguez, Jean Baptiste Vincent, James D. Walker, Kai Wünnemann, Yun Zhang, Marilena Amoroso, Ivano Bertini, John R. Brucato, Andrea Capannolo, Gabriele Cremonese, Massimo Dall’Ora, Prasanna J.D. Deshapriya, Igor Gai, Pedro H. Hasselmann, Simone Ieva, Gabriele Impresario, Stavro L. Ivanovski, Michèle Lavagna, Alice Lucchetti, Elena M. Epifani, Dario Modenini, Maurizio Pajola, Pasquale Palumbo, Davide Perna, Simone Pirrotta, Giovanni Poggiali, Alessandro Rossi, Paolo Tortora, Marco Zannoni, Giovanni Zanotti

Research output: Contribution to journalArticlepeer-review

Abstract

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s−1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m−3, we find that the expected value of the momentum enhancement factor, β, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m−3, β=3.61−0.25+0.19(1σ). These β values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

Original languageEnglish (US)
Pages (from-to)457-460
Number of pages4
JournalNature
Volume616
Issue number7957
DOIs
StatePublished - Apr 20 2023
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos'. Together they form a unique fingerprint.

Cite this