Abstract

Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface. In this work, we systematically vary SAM end-group functionality and quantify the corresponding effect on interfacial failure between a transfer printed gold (Au) film and a fused silica substrate. SAMs with four different end groups are investigated: 11-amino-undecyltriethoxysilane (ATES), dodecyltriethoxysilane (DTES), 11-bromo-undecyltrimethoxysilane (BrUTMS), and 11-mercapto-undecyltrimethoxysilane (MUTMS). In addition to these four end groups, mixed monolayers of increasing molar ratio of MUTMS to DTES in solution are investigated. The failure of each SAM-mediated interface is initiated by a noncontact laserinduced spallation method at strain rates in excess of 106 s-1. By making multiple measurements at increasing stress amplitudes (controlled by the laser fluence), we measure interface strengths of 19 ± 1.7, 20 ± 1.3, 52 ± 5.4, and 80 ± 6.5 MPa for interfaces functionalized with ATES, DTES, BrUTMS, and MUTMS, respectively. The interface strength is effectively tuned between the low strength of DTES and the high strength of MUTMS by controlling the concentration of MUTMS in solution. X-ray photoelectron spectroscopy of the failed interfaces reveals the influence of end group functionality on molecular dissociation, which significantly alters the failure process.

Original languageEnglish (US)
Pages (from-to)11096-11102
Number of pages7
JournalLangmuir
Volume30
Issue number37
DOIs
StatePublished - Sep 23 2014

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Molecular tailoring of interfacial failure'. Together they form a unique fingerprint.

  • Cite this