Molecular biomimetics: Nanotechnology through biology

Mehmet Sarikaya, Candan Tamerler, Alex K.Y. Jen, Klaus Schulten, François Baneyx

Research output: Contribution to journalReview article

Abstract

Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed bu using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.

Original languageEnglish (US)
Pages (from-to)577-585
Number of pages9
JournalNature Materials
Volume2
Issue number9
DOIs
StatePublished - Sep 2003

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K., & Baneyx, F. (2003). Molecular biomimetics: Nanotechnology through biology. Nature Materials, 2(9), 577-585. https://doi.org/10.1038/nmat964