Molecular, behavioral, and performance responses of juvenile largemouth bass acclimated to an elevated carbon dioxide environment

Clark E. Dennis, Shivani Adhikari, Adam W. Wright, Cory D. Suski

Research output: Contribution to journalArticlepeer-review

Abstract

Aquatic hypercarbia, either naturally occurring or anthropogenically induced, can have extensive impacts on aquatic environments and resident organisms. While the impact of acute hypercarbia exposure on the behavior and physiology of fishes has been well studied, relatively little work has examined the physiological impact and acclimation capacity of fishes to chronic hypercarbia. To better understand the impacts of prolonged hypercarbia exposure, largemouth bass were held at ambient CO2 (13 mg L−1) and elevated CO2 (31 mg L−1; ≈21,000 µatm) for 58 days. Following this acclimation period, fish were subjected to three separate, yet complementary, experiments: (1) acute hypercarbia challenge of 120 mg L−1 CO2 for 1 h to quantify physiological and molecular responses; (2) hypercarbia avoidance challenge to compare CO2 agitation and avoidance responses; and (3) swim performance challenge to quantify burst swimming performance. Acclimation to 31 mg L−1 CO2 resulted in a significant constitutive upregulation of c-fos expression in erythrocytes, combined with significant constitutive expression of hsp70 in both gill and erythrocytes, relative to controls. Largemouth bass acclimated to elevated CO2 also had a reduced glucose response (relative to controls) following an acute CO2 exposure, indicating a reduced stress response to CO2 stressors. In addition, largemouth bass acclimated to elevated CO2 conditions required 50 % higher CO2 concentrations to illicit agitation behaviors and displayed prolonged burst swimming abilities in high CO2 environments relative to controls. Together, results demonstrate that largemouth bass exposed to chronic hypercarbia may possess a physiological advantage during periods of elevated CO2 relative to naïve fish, which may permit increased performance in hypercarbia.

Original languageEnglish (US)
Pages (from-to)297-311
Number of pages15
JournalJournal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
Volume186
Issue number3
DOIs
StatePublished - Apr 1 2016

Keywords

  • Acclimation
  • Behavior
  • Hypercarbia
  • Invasive species
  • Performance
  • Stress

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Biochemistry
  • Physiology
  • Animal Science and Zoology
  • Endocrinology

Fingerprint Dive into the research topics of 'Molecular, behavioral, and performance responses of juvenile largemouth bass acclimated to an elevated carbon dioxide environment'. Together they form a unique fingerprint.

Cite this