Papilio glaucus (eastern tiger swallowtail) and Papilio. canadensis (Canadian tiger swallowtail) are two closely related species with broad but overlapping hostplant ranges. P. glaucus encounters toxic furanocoumarins occasionally in its diet in its rutaceous hostplants, whereas P. canadensis rarely if ever encounters these compounds. Analysis of their furanocoumarin-metabolic profiles indicates that these species induce cytochrome P450 monooxygenases (P450s) capable of metabolizing linear and angular furanocoumarins to varying degrees in response to dietary supplementation with xanthotoxin (a linear furanocoumarin). In P. glaucus, metabolism is induced to a significantly higher level than in P. canadensis. Cloning of multiple P450 genes from each species has revealed that both species contain and express two groups of P450s, designated CYP6B4 and CYP6B17, that are related to the P. glaucus CYP6B4v1 enzyme known to metabolize an array of furanocoumarins. Expression patterns of the CYP6B4 and CYP6B17 group transcripts differ in these species in both their basal and furanocoumarin-inducible levels. In P. glaucus, CYP6B4 transcripts, which are not detectable constitutively, are 311-fold induced by xanthotoxin and CYP6B17 transcripts, which are detectable constitutively, are 3-fold induced by xanthotoxin. In P. canadensis, CYP6B4 transcripts are only 8-fold induced and CYP6B17 transcripts are 13-fold induced. These findings are consistent with the postulated evolutionary history of these two species, according to which P. glaucus maintains its association with rutaceous hostplants and P. canadensis has differentiated to utilize hostplants in other families more extensively.

Original languageEnglish (US)
Pages (from-to)999-1011
Number of pages13
JournalInsect Biochemistry and Molecular Biology
Issue number10
StatePublished - 2001


  • Cytochrome P450 monooxygenases
  • Furanocoumarin metabolism
  • Papilio species
  • Plant-insect interactions
  • Xanthotoxin

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Insect Science


Dive into the research topics of 'Molecular analysis of multiple CYP6B genes from polyphagous Papilio species'. Together they form a unique fingerprint.

Cite this