TY - JOUR
T1 - Modulation of ABCG2 Transporter Activity by Ko143 Derivatives
AU - Yu, Qin
AU - Dehghani-Ghahnaviyeh, Sepehr
AU - Rasouli, Ali
AU - Sadurni, Anna
AU - Kowal, Julia
AU - Bang-Soerensen, Rose
AU - Wen, Po Chao
AU - Tinzl-Zechner, Melanie
AU - Irobalieva, Rossitza N.
AU - Ni, Dongchun
AU - Stahlberg, Henning
AU - Altmann, Karl Heinz
AU - Tajkhorshid, Emad
AU - Locher, Kaspar P.
N1 - This study was supported by the Swiss National Science Foundation (SNSF) through the National Centre of Competence in Research (NCCR) TransCure. We thank the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETH Zu\u0308rich, Switzerland, for cryo-EM data collection support.
PY - 2024/11/15
Y1 - 2024/11/15
N2 - ABCG2 is a multidrug transporter that protects tissues from xenobiotics, affects drug pharmacokinetics, and contributes to multidrug resistance of cancer cells. Here, we present tetracyclic fumitremorgin C analog Ko143 derivatives, evaluate their in vitro modulation of purified ABCG2, and report four high-resolution cryo-EM structures and computational analyses to elucidate their interactions with ABCG2. We found that Ko143 derivatives that are based on a ring-opened scaffold no longer inhibit ABCG2-mediated transport activity. In contrast, closed-ring, tetracyclic analogs were highly potent inhibitors. Strikingly, the least potent of these compounds, MZ82, bound deeper into the central ABCG2 cavity than the other inhibitors and it led to partial closure of the transmembrane domains and increased flexibility of the nucleotide-binding domains. Minor structural modifications can thus convert a potent inhibitor into a compound that induces conformational changes in ABCG2 similar to those observed during binding of a substrate. Molecular dynamics simulations and free energy binding calculations further supported the correlation between reduced potency and distinct binding pose of the compounds. We introduce the highly potent inhibitor AZ99 that may exhibit improved in vivo stability.
AB - ABCG2 is a multidrug transporter that protects tissues from xenobiotics, affects drug pharmacokinetics, and contributes to multidrug resistance of cancer cells. Here, we present tetracyclic fumitremorgin C analog Ko143 derivatives, evaluate their in vitro modulation of purified ABCG2, and report four high-resolution cryo-EM structures and computational analyses to elucidate their interactions with ABCG2. We found that Ko143 derivatives that are based on a ring-opened scaffold no longer inhibit ABCG2-mediated transport activity. In contrast, closed-ring, tetracyclic analogs were highly potent inhibitors. Strikingly, the least potent of these compounds, MZ82, bound deeper into the central ABCG2 cavity than the other inhibitors and it led to partial closure of the transmembrane domains and increased flexibility of the nucleotide-binding domains. Minor structural modifications can thus convert a potent inhibitor into a compound that induces conformational changes in ABCG2 similar to those observed during binding of a substrate. Molecular dynamics simulations and free energy binding calculations further supported the correlation between reduced potency and distinct binding pose of the compounds. We introduce the highly potent inhibitor AZ99 that may exhibit improved in vivo stability.
UR - http://www.scopus.com/inward/record.url?scp=85209356745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85209356745&partnerID=8YFLogxK
U2 - 10.1021/acschembio.4c00353
DO - 10.1021/acschembio.4c00353
M3 - Article
C2 - 39445888
AN - SCOPUS:85209356745
SN - 1554-8929
VL - 19
SP - 2304
EP - 2313
JO - ACS chemical biology
JF - ACS chemical biology
IS - 11
ER -