TY - JOUR
T1 - Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays
T2 - performance and commercialization
AU - Kim, M. H.
AU - Cho, J. H.
AU - Park, S. J.
AU - Eden, J. G.
N1 - Publisher Copyright:
© 2017, EDP Sciences and Springer-Verlag GmbH Germany.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24–48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4–6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.
AB - Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24–48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4–6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.
UR - http://www.scopus.com/inward/record.url?scp=85026647789&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026647789&partnerID=8YFLogxK
U2 - 10.1140/epjst/e2016-60355-8
DO - 10.1140/epjst/e2016-60355-8
M3 - Article
AN - SCOPUS:85026647789
SN - 1951-6355
VL - 226
SP - 2923
EP - 2944
JO - European Physical Journal: Special Topics
JF - European Physical Journal: Special Topics
IS - 13
ER -