Modern laboratory-based education for power electronics and electric machines

Robert S. Balog, Zakdy Sorchini, Jonathan W. Kimball, Patrick L. Chapman, Philip T. Krein

Research output: Contribution to journalArticlepeer-review


The study of modern energy conversion draws upon a broad range of knowledge and often requires a fair amount of experience. This suggests that laboratory instruction should be an integral component of a power electronics and electric machines curriculum. However, before a single watt can be processed in a realistic way, the student must understand not only the operation of conversion systems but also more advanced concepts such as control theory, speed and position sensing, switching signal generation, gate drive isolation, circuit layout, and other critical issues. Our approach is to use a blue-box module where these details are pre-built for convenience, but not hidden from the students inside a black box. Recent improvements to our blue-box modules are described in this paper and include a dual-MOSFET control box with independently isolated FET devices, a triple silicon controlled rectifier control box, a discretely built, high quality pulse-width modulation inverter, a small discrete brushless dc drive system, and a high-performance computer-controlled brushless dc dynamometer motor drive system. Complete details, sufficient to allow the reader to duplicate these designs, are publicly available.

Original languageEnglish (US)
Pages (from-to)538-547
Number of pages10
JournalIEEE Transactions on Power Systems
Issue number2
StatePublished - May 2005


  • Education
  • Educational technology
  • Energy conversion
  • Power engineering education

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering


Dive into the research topics of 'Modern laboratory-based education for power electronics and electric machines'. Together they form a unique fingerprint.

Cite this