Modelling the impacts of barrier-island transgression and anthropogenic disturbance on blue carbon budgets

E. J. Theuerkauf, A. B. Rodriguez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The size of backbarrier saltmarsh carbon reservoirs are dictated by transgressive processes, such as erosion and overwash, yet these processes are not included in blue carbon budgets. These carbon reservoirs are presumed to increase through time if marsh elevation is keeping pace with sea-level rise. However, changes in marsh width due to erosion and overwash can alter carbon budgets and reservoirs. To explore the impacts of these processes on transgressive barrier island carbon budgets and reservoirs we developed and tested a transect model. The model couples a carbon storage term driven by backbarrier marsh width and a carbon export term driven by ocean and backbarrier shoreline erosion. We tested the model using data collected from two transgressive barrier islands in North Carolina with different backbarrier settings. Core Banks is an undeveloped barrier island with a wide backbarrier marsh and lagoon, hence, landward migration of the island (rollover) is unimpeded. Barrier rollover is impeded at Onslow Beach as there is no backbarrier lagoon and the island is immediately adjacent to steeper mainland topography. Sediment cores were collected to determine carbon storage rates as well as the quantity of carbon exported from eroding marsh. Backbarrier marsh erosion rates, ocean shoreline erosion rates, and changes in marsh width were determined from aerial photographs. Output from the model indicated that hurricane erosion and overwash as well as human disturbance from the construction of the Intracoastal Waterway temporarily transitioned the Onslow Beach sites to carbon sources. Through time, the carbon reservoir at this barrier continued to decrease as carbon export outpaced carbon storage. The carbon reservoir will continue to exhaust as the ocean shoreline migrates landward given the inability for new marsh to form during island rollover. At Core Banks, barrier rollover is unimpeded and new saltmarsh can form during transgression. The Core Banks site only briefly became a carbon source during an erosive period; otherwise the island functioned as a carbon sink and the reservoir increased across the past century. Our model results indicate barrier island setting controls the sustainability of the carbon reservoir and that transgressive processes should be included in coastal carbon budgets.
Original languageEnglish (US)
Title of host publicationAGU 2017 fall meeting
Volume2017
StatePublished - 2017

Keywords

  • ISGS

Fingerprint

Dive into the research topics of 'Modelling the impacts of barrier-island transgression and anthropogenic disturbance on blue carbon budgets'. Together they form a unique fingerprint.

Cite this