Modeling Transient Slag-Layer Phenomena in the Shell/mold Gap in Continuous Casting of Steel

Ya Meng, Brian G. Thomas

Research output: Contribution to journalArticlepeer-review

Abstract

Mold-slag friction and fracture may cause heat-transfer variations in continuous casting, which leads to steel shell temperature and stress variations, resulting in surface cracks. Analytical transient models of liquid slag flow and solid slag stress have been coupled with a finite-difference model of heat transfer in the mold, gap, and steel shell to predict transient shear stress, friction, slip, and fracture of the slag layers. The models are validated by comparing with numerical models and plant measurements of mold friction. Using reported slag-fracture strength and time-temperature-transformation (TTT) diagrams, the models are applied to study the effect of casting speed and mold-powder viscosity properties on slag-layer behavior between the oscillating mold wall and the solidifying steel shell. The study finds that liquid-slag lubrication would produce negligible stresses. A lower mold-slag consumption rate leads to high solid friction and results in solid-slag-layer fracture and movement below a critical value. Crystalline slag tends to fracture near the meniscus and glassy slag tends to fracture near the mold exit. A medium casting speed may be the safest to avoid slag fracture, due to its having the lowest critical lubrication consumption rate. The high measured friction force in operating casters could be due to three sources: an intermittent moving solid slag layer, excessive mold taper, or mold misalignment.

Original languageEnglish (US)
Pages (from-to)707-725
Number of pages19
JournalMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
Volume34
Issue number5
DOIs
StatePublished - Oct 2003

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Modeling Transient Slag-Layer Phenomena in the Shell/mold Gap in Continuous Casting of Steel'. Together they form a unique fingerprint.

Cite this