Modeling the spread of the Emerald Ash Borer

Todd K. BenDor, Sara S. Metcalf, Lauren E. Fontenot, Brandi Sangunett, Bruce Hannon

Research output: Contribution to journalArticlepeer-review


Recently, an invasive Asian beetle known as the Emerald Ash Borer (EAB) (Agrilus planipennis Coleoptera: Buprestidae) has emerged as a threat to ash trees in the Midwestern United States and Canada [McCullough, D.G., Katovich, S.A., 2004. Pest Alert: Emerald Ash Borer. United States Forest Service, Northeastern Area. NA-PR-02-04]. Significant infestations in Michigan and nearby areas have all but doomed nearly 1 billion native ash trees. However, surrounding regions may still be able to prevent tree damage from occurring at the scale once inflicted by Dutch elm disease in the 1970s. This paper presents an argument for the establishment of a widely accessible knowledgebase of information on the EABs spread capabilities. We argue that spatial dynamic modeling stands as a flexible and powerful decision support system platform. We present initial simulations of EAB spread scenarios constructed using tree information and land use data collected for DuPage County, IL, an uninfected suburban county in the Chicago metropolitan area. These simulations test policies focused on impeding the costly spread of the beetle. This analysis also presents a framework for further studies assessing the economic impacts on municipalities and counties due to tree removal costs and aesthetic damage. Our work points to human driven movement as the major vector for EAB spread throughout our study area. Here, the focus falls on the ability of state and county implemented firewood quarantines to act as effective policies for slowing EAB spread.

Original languageEnglish (US)
Pages (from-to)221-236
Number of pages16
JournalEcological Modelling
Issue number1-2
StatePublished - Aug 10 2006


  • Ash trees (Fraxinus spp.)
  • Cellular automata
  • Dynamic modeling
  • Emerald ash borer (Agrilus planipennis)
  • Invasive species
  • Spatial dispersion
  • Spatial modeling
  • Spatially explicit modeling

ASJC Scopus subject areas

  • Ecological Modeling


Dive into the research topics of 'Modeling the spread of the Emerald Ash Borer'. Together they form a unique fingerprint.

Cite this