TY - JOUR
T1 - Modeling the spread of the Emerald Ash Borer
AU - BenDor, Todd K.
AU - Metcalf, Sara S.
AU - Fontenot, Lauren E.
AU - Sangunett, Brandi
AU - Hannon, Bruce
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/8/10
Y1 - 2006/8/10
N2 - Recently, an invasive Asian beetle known as the Emerald Ash Borer (EAB) (Agrilus planipennis Coleoptera: Buprestidae) has emerged as a threat to ash trees in the Midwestern United States and Canada [McCullough, D.G., Katovich, S.A., 2004. Pest Alert: Emerald Ash Borer. United States Forest Service, Northeastern Area. NA-PR-02-04]. Significant infestations in Michigan and nearby areas have all but doomed nearly 1 billion native ash trees. However, surrounding regions may still be able to prevent tree damage from occurring at the scale once inflicted by Dutch elm disease in the 1970s. This paper presents an argument for the establishment of a widely accessible knowledgebase of information on the EABs spread capabilities. We argue that spatial dynamic modeling stands as a flexible and powerful decision support system platform. We present initial simulations of EAB spread scenarios constructed using tree information and land use data collected for DuPage County, IL, an uninfected suburban county in the Chicago metropolitan area. These simulations test policies focused on impeding the costly spread of the beetle. This analysis also presents a framework for further studies assessing the economic impacts on municipalities and counties due to tree removal costs and aesthetic damage. Our work points to human driven movement as the major vector for EAB spread throughout our study area. Here, the focus falls on the ability of state and county implemented firewood quarantines to act as effective policies for slowing EAB spread.
AB - Recently, an invasive Asian beetle known as the Emerald Ash Borer (EAB) (Agrilus planipennis Coleoptera: Buprestidae) has emerged as a threat to ash trees in the Midwestern United States and Canada [McCullough, D.G., Katovich, S.A., 2004. Pest Alert: Emerald Ash Borer. United States Forest Service, Northeastern Area. NA-PR-02-04]. Significant infestations in Michigan and nearby areas have all but doomed nearly 1 billion native ash trees. However, surrounding regions may still be able to prevent tree damage from occurring at the scale once inflicted by Dutch elm disease in the 1970s. This paper presents an argument for the establishment of a widely accessible knowledgebase of information on the EABs spread capabilities. We argue that spatial dynamic modeling stands as a flexible and powerful decision support system platform. We present initial simulations of EAB spread scenarios constructed using tree information and land use data collected for DuPage County, IL, an uninfected suburban county in the Chicago metropolitan area. These simulations test policies focused on impeding the costly spread of the beetle. This analysis also presents a framework for further studies assessing the economic impacts on municipalities and counties due to tree removal costs and aesthetic damage. Our work points to human driven movement as the major vector for EAB spread throughout our study area. Here, the focus falls on the ability of state and county implemented firewood quarantines to act as effective policies for slowing EAB spread.
KW - Ash trees (Fraxinus spp.)
KW - Cellular automata
KW - Dynamic modeling
KW - Emerald ash borer (Agrilus planipennis)
KW - Invasive species
KW - Spatial dispersion
KW - Spatial modeling
KW - Spatially explicit modeling
UR - http://www.scopus.com/inward/record.url?scp=33746067880&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746067880&partnerID=8YFLogxK
U2 - 10.1016/j.ecolmodel.2006.03.003
DO - 10.1016/j.ecolmodel.2006.03.003
M3 - Article
AN - SCOPUS:33746067880
VL - 197
SP - 221
EP - 236
JO - Ecological Modelling
JF - Ecological Modelling
SN - 0304-3800
IS - 1-2
ER -