@inproceedings{0d08aa1563cd4f4f9ef9dba23287a542,
title = "Modeling the climate change effects on storm surge with metamodels",
abstract = "The prediction of storm surge is an important part of risk analysis for hurricanes because storm surge is the cause of a significant amount of hurricane damage. Although still debated, the effects of climate change on hurricanes may lead to an increase in storm surge occurrences and in the related damages. Consequently, there is the need to analyze the possible consequences of climate change for several possible scenarios. However, the available models for storm surge analyses are either too computationally expensive or incapable of accounting for climate change effects. This paper proposes a random field model for storm surge predictions based on the Improved Latent Space Approach. Contrary to models available in the literature, the presented metamodel can be trained with both data coming from high-fidelity simulations and observations from historical records.",
author = "A. Contento and H. Xu and P. Gardoni and Stephane Guerrier",
note = "Publisher Copyright: {\textcopyright} 2019 Taylor & Francis Group, London.; 6th International Symposium on Life-Cycle Civil Engineering, IALCCE 2018 ; Conference date: 28-10-2018 Through 31-10-2018",
year = "2019",
language = "English (US)",
isbn = "9781138626331",
series = "Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision - Proceedings of the 6th International Symposium on Life-Cycle Civil Engineering, IALCCE 2018",
publisher = "CRC Press/Balkema",
pages = "1719--1726",
editor = "Frangopol, {Dan M.} and Robby Caspeele and Luc Taerwe",
booktitle = "Life-Cycle Analysis and Assessment in Civil Engineering",
}