Modeling texture evolution during rolling of a Cu-Nb multilayered system

K. Al-Fadhalah, C. N. Tomé, A. J. Beaudoin, I. M. Robertson, J. P. Hirth, A. Misra

Research output: Contribution to journalArticlepeer-review


A polycrystal plasticity model is proposed to predict the unique rolling texture of Cu/Nb nanostructured multilayers. At this length scale, the model accounts for the interface between Cu and Nb layers by computing the aggregate response of composite grains using a viscoplastic self-consistent scheme. Each composite grain is divided into Cu and Nb crystals with the interface parallel to the rolling plane, and compatibility and equilibrium are enforced across the interface. A latent hardening effect is introduced to account for the interaction between glide and interface dislocations. The latter are accumulated during slip transmission. This unconventional hardening confines the movement of glide dislocations by promoting symmetry of slip activities. Consequently, it slows development of the rolling texture for Cu/Nb nanolayers, and partially preserves the initial interface orientation defined by the Kurdjumov-Sachs relationship.

Original languageEnglish (US)
Pages (from-to)1419-1440
Number of pages22
JournalPhilosophical Magazine
Issue number13
StatePublished - May 1 2005

ASJC Scopus subject areas

  • Condensed Matter Physics


Dive into the research topics of 'Modeling texture evolution during rolling of a Cu-Nb multilayered system'. Together they form a unique fingerprint.

Cite this