Modeling progressive settlement of a railway bridge transition

Stephen T. Wilk, Timothy D. Stark

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper illustrates the impact of progressive settlement on a railway bridge transition using a three-dimensional dynamic numerical model that includes the train truck, rails, ties, ballast, subgrade, and bridge abutment and structure. A settlement law that relates tie load to ballast settlement is presented and demonstrated using an iterative fashion to evaluate bridge transition response to 28 MGT. The results illustrate: (1) development of the commonly observed dip about 2.5 to 3.7 m (8 to 12 feet) from the entrance bridge abutment, (2) tie-ballast gaps progressively increase in height and expand to ties outwards from the bridge abutment, (3) a redistribution of load to ties outwards from the bridge abutment as tie-ballast gaps develop and increase, and (4) a ballast surface profile that attempts to minimize tie loads by evenly distributing the wheel load amongst adjacent ties.

Original languageEnglish (US)
Title of host publication2016 Joint Rail Conference, JRC 2016
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791849675
DOIs
StatePublished - 2016
Event2016 Joint Rail Conference, JRC 2016 - Columbia, United States
Duration: Apr 12 2016Apr 15 2016

Publication series

Name2016 Joint Rail Conference, JRC 2016

Other

Other2016 Joint Rail Conference, JRC 2016
CountryUnited States
CityColumbia
Period4/12/164/15/16

ASJC Scopus subject areas

  • Transportation

Fingerprint Dive into the research topics of 'Modeling progressive settlement of a railway bridge transition'. Together they form a unique fingerprint.

Cite this