TY - JOUR
T1 - Modeling Perennial Bioenergy Crops in the E3SM Land Model (ELMv2)
AU - Sinha, Eva
AU - Calvin, Katherine V.
AU - Bond-Lamberty, Ben
AU - Drewniak, Beth A.
AU - Ricciuto, Daniel M.
AU - Sargsyan, Khachik
AU - Cheng, Yanyan
AU - Bernacchi, Carl
AU - Moore, Caitlin E.
N1 - Publisher Copyright:
© 2022 Sandia National Laboratories. UChicago Argonne. Oak Ridge National Laboratory. Battelle Memorial institute and the Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
PY - 2023/1
Y1 - 2023/1
N2 - Perennial bioenergy crops are increasingly important for the production of ethanol and other renewable fuels, and as part of an agricultural system that alters the climate through its impact on biogeophysical and biogeochemical properties of the terrestrial ecosystem. Few Earth System Models (ESMs) represent such crops, however. In this study, we expand the Energy Exascale Earth System Land Model to include perennial bioenergy crops with a high potential for mitigating climate change. We focus on high-productivity miscanthus and switchgrass, estimating various parameters associated with their different growth stages and performing a global sensitivity analysis to identify and optimize these parameters. The sensitivity analysis identifies five parameters associated with phenology, carbon/nitrogen allocation, stomatal conductance, and maintenance respiration as the most sensitive parameters for carbon and energy fluxes. We calibrated and validated the model against observations and found that the model closely captures the observed seasonality and the magnitude of carbon fluxes. The validated model represents the latent heat flux fairly well, but sensible heat flux for miscanthus is not well captured. Finally, we validated the model against observed leaf area index (LAI) and harvest amount and found modeled LAI captured observed seasonality, although the model underestimates LAI and harvest amount. This work provides a foundation for future ESM analyses of the interactions between perennial bioenergy crops and carbon, water, and energy dynamics in the larger Earth system, and sets the stage for studying the impact of future biofuel expansion on climate and terrestrial systems.
AB - Perennial bioenergy crops are increasingly important for the production of ethanol and other renewable fuels, and as part of an agricultural system that alters the climate through its impact on biogeophysical and biogeochemical properties of the terrestrial ecosystem. Few Earth System Models (ESMs) represent such crops, however. In this study, we expand the Energy Exascale Earth System Land Model to include perennial bioenergy crops with a high potential for mitigating climate change. We focus on high-productivity miscanthus and switchgrass, estimating various parameters associated with their different growth stages and performing a global sensitivity analysis to identify and optimize these parameters. The sensitivity analysis identifies five parameters associated with phenology, carbon/nitrogen allocation, stomatal conductance, and maintenance respiration as the most sensitive parameters for carbon and energy fluxes. We calibrated and validated the model against observations and found that the model closely captures the observed seasonality and the magnitude of carbon fluxes. The validated model represents the latent heat flux fairly well, but sensible heat flux for miscanthus is not well captured. Finally, we validated the model against observed leaf area index (LAI) and harvest amount and found modeled LAI captured observed seasonality, although the model underestimates LAI and harvest amount. This work provides a foundation for future ESM analyses of the interactions between perennial bioenergy crops and carbon, water, and energy dynamics in the larger Earth system, and sets the stage for studying the impact of future biofuel expansion on climate and terrestrial systems.
KW - ELM
KW - crop modeling
KW - perennial crops
UR - http://www.scopus.com/inward/record.url?scp=85147092703&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147092703&partnerID=8YFLogxK
U2 - 10.1029/2022MS003171
DO - 10.1029/2022MS003171
M3 - Article
AN - SCOPUS:85147092703
SN - 1942-2466
VL - 15
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 1
M1 - e2022MS003171
ER -