@inproceedings{239dba510aeb4456a7d9cdf4279075e0,
title = "Modeling of laser-induced breakdown phenomena in non-equilibrium plasmas",
abstract = "This work discusses the modeling of Laser Induced Breakdown (LIB) in gases. The interaction between the laser beam and the plasma is described via a fluid approach based on the Navier-Stokes equations for a gas in Non-Local Thermodynamic Equilibrium (NLTE). The radiation field is split in two components: (i) collimated and (ii) and non-collimated. To model the collimated component (i.e., the laser), a flux-tube formulation of the Radiative Transfer Equation (RTE) is developed. The non-collimated component, representing the radiation from the laser-induced plasma, is described by an optically thin loss model. The flow governing equations are discretized in space using a second-order finite volume method. The system of equations is time-integrated by a point-implicit dual-time-stepping method. Applications consider the breakdown stage and the early post-breakdown evolution in oxygen plasmas.",
author = "Alessandro Munaf{\`o} and Andrea Alberti and Carlos Pantano and Freund, {Jonathan B.} and Marco Panesi",
note = "Publisher Copyright: {\textcopyright} 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.; AIAA Aerospace Sciences Meeting, 2018 ; Conference date: 08-01-2018 Through 12-01-2018",
year = "2018",
doi = "10.2514/6.2018-0171",
language = "English (US)",
isbn = "9781624105241",
series = "AIAA Aerospace Sciences Meeting, 2018",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Aerospace Sciences Meeting",
}