Modeling of inclusion removal in a tundish

Yuji Miki, Brian G. Thomas

Research output: Contribution to journalArticlepeer-review


Mathematical models have been developed to predict the removal of alumina inclusions from molten steel in a continuous casting tundish, including the effects of turbulent collisions, reoxidation, flotation, and removal on the inclusion size distribution. The trajectories of inclusion particles are tracked through the three-dimensional (3-D) flow distribution, which was calculated with the K-ε turbulence model and includes thermal buoyancy forces based on the coupled temperature distribution. The predicted distributions are most consistent with measurements if reoxidation is assumed to increase the number of small inclusions, collision agglomeration is accounted for, and inclusion removal rates are based on particle trajectories tracked through a nonisothermal 3-D flow pattern, including Stokes flotation based on a cluster density of 5000 kg/m3 and random motion due to turbulence. Steel samples should be taken from as deep as possible in the tundish near the outlet and at several residence times after the ladle is opened, in order to best measure the Al2O3 concentration entering the submerged entry nozzle to the mold. Inclusion removal rates vary greatly with size and with the presence of a protective slag cover to prevent reoxidation. The random motion of inclusions due to turbulence improves the relatively slow flotation of small inclusions to the top surface flux layer. However, it also promotes collisions, which slow down the relatively fast net removal rates of large inclusions. For the conditions modeled, the flow pattern reaches steady state soon after a new ladle opens, but the temperature and inclusion distributions continue to evolve even after 13 residence times. The removal of inclusions does not appear to depend on the tundish aspect ratio for the conditions and assumptions modeled. It is hoped that this work will inspire future measurements and the development of more comprehensive models of inclusion removal. These validated models should serve as powerful quantitative tools to predict and optimize inclusion removal during molten steel processing, leading to higher quality steel.

Original languageEnglish (US)
Pages (from-to)639-654
Number of pages16
JournalMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
Issue number4
StatePublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Modeling of inclusion removal in a tundish'. Together they form a unique fingerprint.

Cite this