Abstract
The modeling of hypersonic radiation in non-equilibrium, non-continuum flows is considered in the framework of the direct simulation Monte Carlo (DSMC) approach. The study explores the influence of electronic states on the flow chemistry and degree of ionization as well as the assumption that the electronic states can be described by a steady state solution to a system of rate equations of excitation, de-excitation, and radiative transfer processes. The work implements selected excited levels of atomic nitrogen and oxygen and the corresponding electron impact excitation/de-excitation and ionization processes in DSMC. The simulations show that when excitation models are included, the degree of ionization in the Stardust transitional re-entry flow increases due to additional intermediate steps to ionization. The extra ionization reactions consume the electron energy to reduce the electron temperature. The DSMC predicted excited state level populations are lower than those predicted by a quasi steady state calculation, but the differences can be understood in terms of the flow distribution functions.
Original language | English (US) |
---|---|
Article number | 066102 |
Journal | Physics of fluids |
Volume | 23 |
Issue number | 6 |
DOIs | |
State | Published - Jun 3 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- Computational Mechanics
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Fluid Flow and Transfer Processes