Modeling, Control, and Clinical Validation of an Upper-Limb Medical Education Task Trainer for Elbow Spasticity and Rigidity Assessment

Yinan Pei, Mahshid Mansouri, Christopher M. Zallek, Elizabeth T. Hsiao-Wecksler

Research output: Contribution to journalArticlepeer-review


The goal of this study was to validate a series elastic actuator (SEA)-based robotic arm that can mimic three abnormal muscle behaviors, namely lead-pipe rigidity, cogwheel rigidity, and spasticity for medical education training purposes. Key characteristics of each muscle behavior were first modeled mathematically based on clinically-observed data across severity levels. A controller that incorporated feedback, feedforward, and disturbance observer schemes was implemented to deliver haptic target muscle resistive torques to the trainee during passive stretch assessments of the robotic arm. A series of benchtop tests across all behaviors and severity levels were conducted to validate the torque estimation accuracy of the custom SEA (RMSE: 0.16 Nm) and the torque tracking performance of the controller (torque error percentage: < 2.8 %). A clinical validation study was performed with seven experienced clinicians to collect feedback on the task trainer's simulation realism via a Classification Test and a Disclosed Test. In the Classification Test, subjects were able to classify different muscle behaviors with a mean accuracy > 87 % and could further distinguish severity level within each behavior satisfactorily. In the Disclosed Test, subjects generally agreed with the simulation realism and provided suggestions on haptic behaviors for future iterations. Overall, subjects scored 4.9 out of 5 for the potential usefulness of this device as a medical education tool for students to learn spasticity and rigidity assessment.

Original languageEnglish (US)
Pages (from-to)3320-3330
Number of pages11
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
StatePublished - 2023


  • Medical education training
  • force control
  • haptics
  • medical robotics
  • muscle tone
  • neurological examination
  • rigidity
  • series elastic actuator
  • simulation
  • spasticity

ASJC Scopus subject areas

  • Rehabilitation
  • General Neuroscience
  • Internal Medicine
  • Biomedical Engineering


Dive into the research topics of 'Modeling, Control, and Clinical Validation of an Upper-Limb Medical Education Task Trainer for Elbow Spasticity and Rigidity Assessment'. Together they form a unique fingerprint.

Cite this