TY - GEN
T1 - MODELING AND PREDICTION OF SUB-MICROMETER HEAT TRANSFER DURING THERMOMECHANICAL DATA STORAGE
AU - King, William P.
AU - Santiago, Juan G.
AU - Kenny, Thomas W.
AU - Goodson, Kenneth E.
N1 - Publisher Copyright:
© 1999 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 1999
Y1 - 1999
N2 - Heat transfer governs the bit size and writing rate during sub-micrometer thermomechanical data storage with Atomic Force Microscope (AFM) cantilevers. The present work predicts the temperature distribution and rates of heat flow in the AFM tip and the substrate as functions of the peak cantilever temperature, the diameter of the tip-substrate contact, and the thickness of the deforming polymer coating on the silicon substrate. The calculations consider increased phonon scattering, radiation losses, and gas conduction losses at the silicon tip boundaries. Nearly ballistic phonon transport in the tip augments the dependence of the heat rate into the polymer on the tip-polymer contact diameter. For a cantilever heater temperature of 700 K and a polymer layer thickness of 80 nm, the temperature at the tip-polymer interface is predicted for contact diameters from 4 nm to 50 nm. This work models the deformation of the polymer layer during data writing and predicts data bit size as a function of tip temperature and writing time. These simulations will help optimize the design of the cantilever and the polymer data layer, with the goal of increasing the spatial density and rate of bit formation.
AB - Heat transfer governs the bit size and writing rate during sub-micrometer thermomechanical data storage with Atomic Force Microscope (AFM) cantilevers. The present work predicts the temperature distribution and rates of heat flow in the AFM tip and the substrate as functions of the peak cantilever temperature, the diameter of the tip-substrate contact, and the thickness of the deforming polymer coating on the silicon substrate. The calculations consider increased phonon scattering, radiation losses, and gas conduction losses at the silicon tip boundaries. Nearly ballistic phonon transport in the tip augments the dependence of the heat rate into the polymer on the tip-polymer contact diameter. For a cantilever heater temperature of 700 K and a polymer layer thickness of 80 nm, the temperature at the tip-polymer interface is predicted for contact diameters from 4 nm to 50 nm. This work models the deformation of the polymer layer during data writing and predicts data bit size as a function of tip temperature and writing time. These simulations will help optimize the design of the cantilever and the polymer data layer, with the goal of increasing the spatial density and rate of bit formation.
UR - http://www.scopus.com/inward/record.url?scp=47149088098&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=47149088098&partnerID=8YFLogxK
U2 - 10.1115/IMECE1999-0324
DO - 10.1115/IMECE1999-0324
M3 - Conference contribution
AN - SCOPUS:47149088098
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 583
EP - 588
BT - Micro-Electro-Mechanical Systems (MEMS)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 1999 International Mechanical Engineering Congress and Exposition, IMECE 1999
Y2 - 14 November 1999 through 19 November 1999
ER -