Abstract
The language modeling approach to retrieval has been shown to perform well empirically. One advantage of this new approach is its statistical foundations. However, feedback, as one important component in a retrieval system, has only been dealt with heuristically in this new retrieval approach: The original query is usually literally expanded by adding additional terms to it. Such expansion-based feedback creates an inconsistent interpretation of the original and the expanded query. In this paper, we present a more principled approach to feedback in the language modeling approach. Specifically, we treat feedback as updating the query language model based on the extra evidence carried by the feedback documents. Such a model-based feedback strategy easily fits into an extension of the language modeling approach. We propose and evaluate two different approaches to updating a query language model based on feedback documents, one based on a generative probabilistic model of feedback documents and one based on minimization of the KL-divergence over feedback documents. Experiment results show that both approaches are effective and outperform the Rocchio feedback approach.
Original language | English (US) |
---|---|
Pages | 403-410 |
Number of pages | 8 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |
Event | Proceedings of the 2001 ACM CIKM: 10th International Conference on Information and Knowledge Management - Atlanta, GA, United States Duration: Nov 5 2001 → Nov 10 2001 |
Other
Other | Proceedings of the 2001 ACM CIKM: 10th International Conference on Information and Knowledge Management |
---|---|
Country/Territory | United States |
City | Atlanta, GA |
Period | 11/5/01 → 11/10/01 |
ASJC Scopus subject areas
- Decision Sciences(all)
- Business, Management and Accounting(all)