TY - GEN
T1 - Model and Integrate Medical Resource Available Times and Relationships in Verifiably Correct Executable Medical Best Practice Guideline Models
AU - Guo, Chunhui
AU - Fu, Zhicheng
AU - Zhang, Zhenyu
AU - Ren, Shangping
AU - Sha, Lui
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/8/21
Y1 - 2018/8/21
N2 - Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients' death rate is significantly reduced by computerizing medical best practice guidelines [16]. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources [15]. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.
AB - Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients' death rate is significantly reduced by computerizing medical best practice guidelines [16]. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources [15]. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.
KW - Medical Resource Available Time Models
KW - Medical Resource Relationship Models
KW - Verifiably Correct Executable Medical Guideline Models
UR - http://www.scopus.com/inward/record.url?scp=85053556696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053556696&partnerID=8YFLogxK
U2 - 10.1109/ICCPS.2018.00032
DO - 10.1109/ICCPS.2018.00032
M3 - Conference contribution
AN - SCOPUS:85053556696
SN - 9781538653012
T3 - Proceedings - 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2018
SP - 253
EP - 262
BT - Proceedings - 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2018
Y2 - 11 April 2018 through 13 April 2018
ER -