TY - GEN
T1 - Mobility profiling for user verification with anonymized location data
AU - Lin, Miao
AU - Cao, Hong
AU - Zheng, Vincent
AU - Chang, Kevin Chen Chuan
AU - Krishnaswamy, Shonali
PY - 2015
Y1 - 2015
N2 - Mobile user verification is to authenticate whether a given user is the legitimate user of a smartphone device. Unlike the current methods that commonly require users active cooperation, such as entering a short pin or a one-stroke draw pattern, we propose a new passive verification method that requires minimal imposition of users through modelling users subtle mobility patterns. Specifically, our method computes the statistical ambience features on WiFi and cell tower data from location anonymized data sets and then we customize Hidden Markov Model (HMM) to capture the spatial-temporal patterns of each user's mobility behaviors. Our learned model is subsequently validated and applied to verify a test user in a time-evolving manner through sequential likelihood test. Experimentally, our method achieves 72% verification accuracy with less than a day's data and a detection rate of 94% of illegitimate users with only 2 hours of selected data. As the first verification method that models users' mobility pattern on location-anonymized smartphone data, our achieved result is significant showing the good possibility of leveraging such information for live user authentication.
AB - Mobile user verification is to authenticate whether a given user is the legitimate user of a smartphone device. Unlike the current methods that commonly require users active cooperation, such as entering a short pin or a one-stroke draw pattern, we propose a new passive verification method that requires minimal imposition of users through modelling users subtle mobility patterns. Specifically, our method computes the statistical ambience features on WiFi and cell tower data from location anonymized data sets and then we customize Hidden Markov Model (HMM) to capture the spatial-temporal patterns of each user's mobility behaviors. Our learned model is subsequently validated and applied to verify a test user in a time-evolving manner through sequential likelihood test. Experimentally, our method achieves 72% verification accuracy with less than a day's data and a detection rate of 94% of illegitimate users with only 2 hours of selected data. As the first verification method that models users' mobility pattern on location-anonymized smartphone data, our achieved result is significant showing the good possibility of leveraging such information for live user authentication.
UR - http://www.scopus.com/inward/record.url?scp=84949750117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949750117&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84949750117
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 960
EP - 966
BT - IJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
A2 - Wooldridge, Michael
A2 - Yang, Qiang
PB - International Joint Conferences on Artificial Intelligence
T2 - 24th International Joint Conference on Artificial Intelligence, IJCAI 2015
Y2 - 25 July 2015 through 31 July 2015
ER -