MLHat: Deployable Machine Learning for Security Defense

Gang Wang, Arridhana Ciptadi, Ali Ahmadzadeh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The MLHat workshop aims to bring together academic researchers and industry practitioners to discuss the open challenges, potential solutions, and best practices to deploy machine learning at scale for security defense. The workshop will discuss related topics from both defender perspectives (white-hat) and the attacker perspectives (black-hat). We call the workshop MLHats, to serve as a place for people who are interested in using machine learning to solve practical security problems. The workshop will focus on defining new machine learning paradigms under various security application contexts and identifying exciting new future research directions. At the same time, the workshop will also have a strong industry presence to provide insights into the challenges in deploying and maintaining machine learning models and the much-needed discussion on the capabilities that the state-of-the-arts failed to provide.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4161-4162
Number of pages2
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

Keywords

  • adversarial machine learning
  • deployable machine learning
  • security and privacy

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'MLHat: Deployable Machine Learning for Security Defense'. Together they form a unique fingerprint.

Cite this